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Introduction

This is a request for a second renewal (3 rd year of funding) of a research project on the

topic of multiresolution and explicit methods for vector field analysis and visualization.

In this report, we describe the progress made on this research project during the second

year and give a statement of the planned research for the third year.

Report on Research Progress During the Second Year

There are two aspects to this research project. The first is concemed with the

development of techniques for computing tangent curves for use in visualizing flow

fields. The second aspect of the research project is concerned with the development of

multiresolution methods for curvilinear grids and their use as tools for visualization,

analysis and archiving of flow data. We report on our work on the development of

numerical methods for tangent curve computation first.

The basic idea of these methods is to decompose the domain into a collection of

triangles (or tetrahedra) and assume linear variation of the vector field over each cell.

With this assumption, the equations which define a tangent curve become a system of

linear, constant coefficient ODE's which can be solved explicitly. In our report on the

progress made in the first year of the project, we reported on our work in 2D. We have

done the mathematical analysis on the explicit and incremental methods for 2D and

written and tested thoroughly the computer programs implementing certain aspects of

these algorithms. We have submitted for publication (see [1]) some of our research

results in this area. We mentioned in the previous progress report our plans to extend our

work in this area to 3D. This involves tetrahedral decompositions of the 3D curvilinear

grids (see our submitted research in this area [2] ) and the development of explicit and

incremental methods for linearly varying vector fields over tetrahedra. We have

completed the mathematical analysis and are in the program development stages at this
moment. We include here the mathematics for the 3D case. In the situation of a 2D flow

over a 2D domain, there were five (5) distinct cases determined by the eigenvalues of the

coeficient matrix of the ODE defining the tangent curves of the flow. In the 3D situation

there are nine (9) cases.

3D Explicit Respesentations

P'(t)=la21 a22 a23[P(t) + ,P(0)=P0
\a31 a32 a33J

Case 1) A has three real, nonzero, eigenvalues (r I ¢ r2 ¢ r3 ;_ 0)





P(t) = Ele '_' + E2e '_ + E3e '_' + Pc

A - r2I r31- A

A-r31 rlI- A p. _

A-rlI r2I-A
AP_ +B=O

Case 2) A has one real, nonzero and two equal, nonzero, eigenvalues (r l . r2 : r3 _ 0)

P(t) = E,e '_ + E2e '_ + E3te "_ + Po

A -r_I

(rlI-A)(rtI-2r2I+A)(p ° Pc),E 2 = -- ----_ -
(rz -rl)

(A- ,
E3 = _,r27-7-_i [Po - Pc), APe + B = 0

Case 3) A has three equal, nonzero, eigenvalues (r l = r2 = r3 ¢ 0)

P(t) :Ete '_' + E_te '_' + E3t2e '_ + Pc

E, : (Po - P_),

E_ : (A-_,X)(Po- e),

E 3 (A-rtllZ(po-e) ,- -2 AP_ +B:O





Case 4) A has one real, nonzero and two complex, eigenvalues (r_ _ 0, p + _.i, X _ 0)

P(t) = - t_, ._,e +E_e"co_0.t)+E:" sin(_t)+e_

g),

(r,I- A)(r,I- 2_1 + A)(Po - P),

(A - r,I)((A - _)(I.t -_)+ _2i)+
AP_ +B=0

Case 5) A has one real, nonzero and two zero eigenvalues (r1 = r2 : 0, r3 ¢ 0)

P(t) = E,t + E2 t2 + E3(e "_ -tr_- 1)+ Po

E,: (APo+_),

E_-A_II-_)2

E3 A BJr- .

Case 6) A has three zero eigenvalues (r I = r2 = r3 = 0)

P(t) = Elt + Ez tz + E3t3 + Po

E, :(AP o + B),

A (Ap o + B),
E 2 = -_

AZB

E3- 6
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Case7) A has two real, nonzero and one zero eigenvalues (r t = 0, 0 # r2 _ r3 _: O)

P(t) = E,t + Ei(e 'r= - 1)+ E3(e '_' -1)+ Po

r 2-r 3 J r3Jk q-r 3 JJ

u:=g Po+ .... ,,,r 2 -r3j

E 3 = A CPo +_)¢r2/---d- 1.
r3\ 2r2-r3/

Case 8) A has two real equal, nonzero and one zero eigenvalues (r_ = 0, r2 = r3 _ 0)

P(t) : E,t + E2(e 'r_ -1)+ E3te '_=+ Po

E, : (1+ _2 (_- 2/))B,

E2= A 2 Po + I- + -- ,
rzk\ . r,

Case 9) A has one zero and two complex, eigenvalues (r l = 0, _t + Xi, X _ 0)

P(t) : Ell + E2(e _ cos(_.t)-1)+ E3e "t sin()vt)+ Pc

(2p.I-A'_']E,= v  JJ=,
A

- + ( 3_zI
+ p2 + X2

Based upon the explicit representations give above, we have developed incremental

methods which compute points on the exact solution of the tangent curves. We present

the formulas for these incremental methods for the nine (9) cases below. (The matrix, E,

consists of columns which are the eigenvectors of matrix A.)
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3D Incremental Method in Cartesian Coordinates

Case 1) A has three real, nonzero, eigenvalues (r l _ r2 ¢ r3 ¢ 0)

If [EI ¢ 0 then

I e Atn 0

P(t + At)- Pc = E[ O0 eAtr20

If [E[ = 0 then

P(t+At): P(t)_+At(ec- Po)

0 E-'(P(t)-Pc)

e atr_

Case 2) A has one real, nonzero and two equal, nonzero, eigenvalues (r 1 _ r2 : r3 . 0)

If ]El * 0 then

I e '_

If [El = 0 then

e(t +At): p(O---At(Z-Po)

oo]e_: o E-'(e(O-Pc)
Atet_.: ea,r=

Case 3) A has three equal, nonzero, eigenvalues (r l = r2 = r3 _ O)

If IE[ _ 0 then

[ 1 0 !]
P(t + At)- P_ = Ee _ at 1 E<(P(t)- Pc)

(At)2 2at
If IEI=0 then

P(t + at)= P(t)+_At(Po- 1'o)

Case 4) A has one real, nonzero and two complex, eigenvalues (r l _ 0, _t + 7_i, _. _ 0)

e Atrj

P(t + At)- Pc = El 00

0

cos(_,At)e _

sin(LAt)e '_t
o- sin(_'At) e_ E-I(P(t) - Pc)

cos(ZAt)e _





Case 5) A has one real, nonzero and two zero eigenvalues (r 1 = r2 = 0, r3 =x0)

Case 6) A has three zero eigenvalues (r l = r2 = r3 = 0)

P(t+At): I+AtA+(A P(t)+At I+ 2 +----6 B

Case 7) A has two real, nonzero and one zero eigenvalues (r_ = 0, 0 ¢ r2 ¢ r3 ¢ 0)

( )1P(t+At)= I+--I .... |[e _-1)+ ..... 1 P(t)
r2kr2-r3J 7 r2-r3d

At(i+ ,_____A2(A__-r3/'_r.... |_e =eu_ Atr, 1) A ('r,I-A']t a,, Atr3 -1)]B+ - - +-T---TI ..... lie ' -
k. Atr,. k, r2 -r 3 j " Atr; k r2 -r 3 )

Case 8) A has two real equal, nonzero and one zero eigenvalues (r I : 0, r2 - r3 =_ 0)

P(t+At'=(I+AI-_2 -IlAteam +AI2I-A)(e_a_" -l))P(t'

+At( I+A(Ar2 \r z -I)e_m + A--_(3I- 2AI( e_" -I)+A{_-2I))BAt, k r2 '-e .





Case 9) A has one zero and two complex, eigenvalues (r l = 0,/.t + _.i, X ¢ O)

e(t + at)--

+ At

(AtI + /a2 + L2 (2pJ- A)e"m(cos(LAt)- 1)

+ (3.(/.t iA X2)t (/-L4- (P)- _._)I)e_ sin(_,Atl

A I3p-zI-X2I-2p.4) _- ,I+-_- _-S + _)_-Je' (cos(LA,) - 1)

+ _ (g2 + _2)- (g2 + X2)2 e _' sin(XAt)

e(t)

2_-A'+I+A --_-_
_t- + X'j

B

We did not discuss this in the report on the first year's progress, but we have also

developed incremental methods that compute points on the true tangent curves (not

approximations) using barycentric coordinates. The reason for doing the computations in

barycentric coordinates is to make it cheap and easy to determine when the curve leaves

one triangle and enters a neighboring triangle. All that needs to be done is to check the

sign of the barycentric coordinates. If all three are not positive, then the curve has left the

triangle and which barycentric is not positive tells us which neighboring triangle the

tangent curve has entered. We give the formulas for the 2D incremental methods using

barycentric coordinates below. These formulas are based upon explicit, exact solutions

represented in terms of barycentric coordinates which we also include here.

In the formulas below, p(t)represents the tangent curve in barycentric coordinates.

That is

bi(t)]

p(,)=/bj(,)/
\bk(t))

and p(t) = bi(t)V i + bj(t)Vj + bk(t)V k

where Vi, Vj, Vk are the velocity vectors at the vertices of the triangle currently

containing the tangent curve. The matrix V (used below) includes the information which

defines the tangent curve which is similar in role to the matrix A and column vector B in

the cartesian coordinate case.

2D Explicit Solutions in Barycentric Coordinates:

p'(t)= Vp(t), p(0):P0

Case 1) V has two real, nonzero and one zero eigenvalues 0 ¢ rl _ re :_ 0, r3 = 0
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p(t)= ere _' + e2e'" + p_

V(V-r2I]po,e I =-- __

r,\ r,-r2 Y

V(rlI-V]p °e 2 :--- __

r2 \ r, - r2 J

Case 2) V has one real, nonzero and two zero eigenvalues r_ = 0,

p(t)=elt +e:(e t'2 -1)+ P0

e, = V I - V_p o e2 - Po
,2; (,2)2

Case 3) V has three zero eigenvalues rt = r2 = rs = 0

p(t) = e,t + e2 t2 + Po

V 2

el = Vpo e2 = -_- Po

r2 sO,

Case 4) A has two real equal, nonzero and one zero eigenvalues rI = r2 ;_ 0, r3 = 0

r3=0

e2_V V_
r2\ r2J

Case 5) A has one zero and two complex, eigenvalues _u_+2i, A _: 0, r3 = 0

P(t)= e,e _' cos(2t) + e2e _ sin(2t)+ Pc

el= V ) Po e2=( A(p2+22) JP0

P (t) = e, e "_ + e2te'r_ + P_





2D Incremental Method in Barycentric Coordinates

Case 1) V has two real, nonzero and one zero eigenvalues 0 _ rl ;_ r2 ;e 0, r3 = 0

I V(V-r2l')/a_,._ .'_ V(r,I-V')/,Xtr )]
p(t + At) = I +--;--lie - _)+--/--/_e _- 1 p(t)

r_ \ rl-r2 ) r2 \ rx-r2 ,J

Case 2) V has one real, nonzero and two zero eigenvalues i-i = 0, r2 _ 0, r3 = 0

Case 3) V has three zero eigenvalues r1 = r2 = r3 = 0

p(t +  xt)= z + zxtv + p(t 

Case 4) V has two real equal, nonzero and one zero eigenvalues r_ = r2 _ 0, r3 = 0

Case 5) V has one zero and two complex, eigenvalues # + 2i, A _ 0, r3 = 0

We are at this moment in the process of finishing off the development of the

equations similar to the above for 3D and plan on implementing all of the 3D methods
mentioned above in the near future.

10





We now move to a discussion on our research progress in the other topic of this

research project and this is in the area of multiresolution modeling. Our work in this area
can be broken down into two subareas: i) triangular grids with applications to arbitrary

domains and ii) curvilinear grids. We first take up the topic of triangular grids and our

current extensions to tetrahedral grids.

Earlier we reported on some new Haar type wavelets for subdivision of triangular

domains as illustrated in Figure 1. The basic decomposition step is illustrated in Figure 2.

The qb's are the characteristic functions for the subtriangles and therefore form a basis for

piecewise contant functions. The qJ's are the wavelet functions which capture the detail

(error) and hopefully they are mutually orthogonal so that we obtain best least squares

approximations when we do the wavelet decompositions.

J
JJ

jii jio jiJ_oNkJ jko jkk

jjk jjo jji

JJJ

Figure 1. Nested triangular domain with labeling scheme.
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replace with

_ - ._ _--_

- ..... _ "" +Ynitllni +YnjWnj

"' _/ • _V • JV

X.o*no+  i*ni + z.j,nj + -..

Figure 2. Basic decomposition step for Haar wavelets over nested triangular domains

Biorthogonal wavelets within this context have previously appeared. We have

developed some improvements. While these new wavelets are also only biorthogonal,

they have the property that when the areas do become the same, the wavelets become

mutually orthogonal and this is a definite plus when it comes to ability to approximate

data. A nice example of where this happens is with the standard triangular decomposition

of the sphere.

We have applied our new wavelets to data consisting of a vector field defined over the

sphere. Our research on Haar wavelets for nested triangular grids and applications to

fluid flow analysis over a spherical domain is reported in the submitted manuscript [4].

View 1, 1% View 1, 20%

Figure 3. Partial (nearly orthogonal) spherical wavelet reconstruction of a flow field

defined over a spherical domain.
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Also we have applied our new, nearly orthogonalwavelets to some "real data"
provided to us by RogerCrawfis andNelson Max of LLNL. This is simulateddata
resultingfrom aglobal weathermodel. A typical imagefor this work is shownin Figure
4. Moredetailscanbefoundin the submittedmanuscript[4].

View 1,100% View 1,3%
Figure4. Partialreconstructionof globalweatherdata.

We havestartedourwork onextendingthe researchonwaveletsdefinedovernested
triangulargridsto thecaseof nestedtetrahedralgrids. Onesurprisehasalreadycomeup.
We hadthoughtthat it would benaturalto usethenestedtetrahedralgridsbaseduponthe
basic decompositonas shown in Figure 5. This decompostionseemedto be the 3D
analogof the decompositonusedfor trianglesshownin Figure 1. We startedto work
with thesetypesof gridsandthenfoundout muchto oursurprisethatwe couldnotdefine
affmeinvariantwaveletsoverthesetypesof decompositions.Wefeel thatthepropertyof
affine invarianceis extremelyimportant. In essenceit saysthattheresultsof anyanalysis
or compressionbasedupon thesewavelets is not affected by the way we label the
triangles. Clearly, it is undesirableto haveanalgorithmthatdependson the innerdetails
of how it is coded. In orderto maintainthepropertyof aft'meinvariance,wehavemoved
to a different type of basicdecompositionstep. It is shownin Figure 6. Ratherthan 8
subtetrahedaper tetrahedron,we have 17 (yes 177) subtetrahedraper tetrahedron.
Utilizing Mathemaicawe have recentlybeenable to definesomeaffine invariantHaar
waveletsbaseduponthis typeof decomposition.Wearereallyquite exicitedaboutthese
resultsandcan't wait to implementthemandseehowtheyperform.
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Figure5.A standardtetrahedralsubdivisionwhich will notwork for definingaffme
invariantwavelets.
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Figure 6. Decomposing a tetrahedron into 17 sub-tetrahedra. The top figure shows the

edges on the faces and the bottom is an exploded view.

In order to convey some idea of our current progress on Haar wavelets defined over

tetrahedrizations shown in Figure 6, we include some of our preliminary results for the

basic refinement equations for these new wavelets. The free parameters below are c, a0,

al, a2, b0, bl, b2, and b3. We impose the orthogonality conditions and then use

Mathematica to solve for the refinement equations with the values give below.

a0

al

al

al

al

al

1 1 1 I 1 1 1 1 1 1 1

al al al al al al al a! al al al

a0 al at al al al at a! al al al

al a0 al al al al al al al al al

al al ao al al al at al al al al

al al al ao al al at al al al al

al al al al ao al at al al al al

1 1 1 1

b0 bl bl bl

bt b0 bl bl

bt b] b0 bl

bl bl b] b0

b0 b] bl bt

bL bo bl bt
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al a! al al al al ao al al al al

a[ a! a! al a! a! a! ao al al al

al al al al al al al al ao al a!

al at al al al al al al al ao at

at al al at al al al a! al at ao al

al al al al al al al al al al al ao

a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2

a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2

a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2

a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2 a2

al

al

a!

al

bl

b2

b3

b3

b3

bl bl bo bl

bl bl bi bo

bo b_ b_ bl

bl bo bt bl

bl bl bo b2

bl bl bo

b3 b3 b3

b2 b3 b3

b3 b2 b3

b3 b3 b2

Solutions:

The following constants are used in the solutions which give values for a0, aE, a2, b0, b_,

b2, and b3.

Constant

kl

k2

k3

k4

Symbolic Value
- c 5c
--+ -- 1_
16 - 64

-¢ ¢ c

16 - 16

Solution 1"

ao

al

a2

bo

bl

b2

b3

-7/10c- 51/5 kl

ks

-21/80c- 16/5 ks

-3/40c - 1/5 ks

-3/40c - 1/5 ks

211/80c + 216/5 ks

- 13/80c - 8/5 ks
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Solution2:

ao
al

82

b0

bl

b2

b3

-c- 15k4

k4
k4
k4
k4
-c- 15k4

k4

Solution 3:

a0

al

a2

b0

bl

b2

b3

-21/26c -155/13 k3

k3

35/208c - 48/13 k3

-5/104c + 3/13 k3

-5/104c + 3/13 k3
-661/208c - 648/13

k3

11/208c + 24/13 k3

Solution 4:

a0

at

a2

b0

bl

b2

b3

2419c 3 + 38320c2k2 -19008ck_ -101376k_

408c 2

257c 3 + 3632c2k2 -1728ck_ - 9216k_
m

408c 2

60C 3 + 959c2k2 - 432ck2 _ - 2034k 3

17c z

k2

k2

6565c 3 + I02960c-'kz - 46656ck_ - 248832k_

136c 2

223c 3 +3632c2k2 - 1728ck_ - 9216k_

136c 2

We now discuss our research in the area of multiresolution models for curvilinear

grids. In the original proposal we mentioned the idea of using multiresolution models for

parametric curves in this context. The idea is based upon the observation that a

curvilinear grid can be viewed as a parametric map and researchers have already

developed techniques for using wavelets on parametric curves. Unfortunately there is a

basic problem with this approach and that lies in the fact that not only do you obtain a

lower resolution approximation to the flow, but you also get a lower resolution
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approximationto the botmdaryof the domain. This means that the domain will be

"smoothed down" also. We have overcome this problem in 2D by using a knot removal

technique to yield a collection of nested domains as illustrated in Figure 7. (Note that the

detail of the inner boundary (not the outer, though) remains through all levels of

approximation).

/ I I i

1

J

r- - : ......

L -- ............... L ......

i

, i
i

1

]

Figure 8. Decomposition by knot removal

We have developed some Haar wavelets for these types of decomposition and

examples of our new algorithms are included in the submitted manuscripts [1] and [4].

We plan to write another research paper delineating more of the details of these methods,

but will most likely wait to do this after our 3D work is completed. We have done most

of the developmental work for the 3D case and are in the middle of doing the

implementation.

As we had planned, we have extended the Haar wavelets to higher degree continuity.

We have used the so called "lifting scheme." These higher order methods are more

expensive to compute, but they are much more efficient. An example is shown in Figure
9.
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Figure 9a. Haar wavelet approximations over nested curvilinear grid.
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I

Figure 9b. Improved linear wavelet approximations over nested curvilinear grid.
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Summary of 2 RaYear Research

• Explicit Methods

We have developed, implemented and thoroughly tested the 2D explicit

techniques based upon linear variation over triangles. We can compute a single tangent

curve or compute a complete topological graph of a 2D flow over a curvilinear grid.

We have done the mathematical analysis for the extension of the explicit method

to 3D (some of the equations are given earlier in this report) and we are currently

developing and implementing incremental methods for 3D tetrahedra and curvilinear

grids.

• Multiresolution Methods for Curvilinear Grids

We extended our piecewise constant wavelets over 2D curvilinear grids to

piecewise linear wavelets. We are currently in the middle of implementing and testing

these methods. Some preliminary results are shown in Figure 9 of this report.

We have developed the data structures and algorithms for extending our knot

removal algorithms for curvilinear grids to 3D. This requires the tetrahedrization of

general polyhedra with fixed boundary polygons. We are now in the middle of

implementing these results.

• Multiresolution methods for nested triangular grids

We have used a lifting scheme to extend the 2D Haar wavelets to piecewise
linear.

We have developed the basic decompositionn and refinement equations for Haar

3D wavelets over certain (see Figure 6) tetrahedral subdivisions. These new equations

appear for the first time in this report.
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Publications resulting from the research of this project
(All publications listed here specifically acknowledge support under this NASA grant and

copies are attached)

. G. M. Nielson, I.-H. Jung, N. Srinivasan, J. Sung and J.-B. Yoon, Tools for

computing tangent curves and topological graphs for visualizing piecewise linearly

varying vector fields over triangulated domains, to appear in the book, Scientific

Visualization: Overviews, Methodologies, and Techniques, CS Press, 1997. pp. 517-

558.

, G. M. Nielson, Tools for triangulations and tetrahedrizations and construction

functions defined over them, to appear in the book, Scientific Visualization:

Overviews, Methodologies, and Techniques, CS Press, 1997, pp. 419-515.

3. G. M. Nielson and Junwon Sung, Interval volume tetrahedrization, submitted to

Visualization '97 Conference.

. G. M. Nielson, I1-Hong Jung and Junwon Sung, Haar wavelets over triangular

domains with applications to multiresolution models for flow over a sphere,
submitted to Visualization '97 Conference.

5. G.M. Nielson and Richard Franke, Computing the separating surface for segmented

data, submitted to Visualization '97 Conference.
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Statement of Work for Next Year

As we have previously done, we structure our discussion upon the topics of this

research proposal: explicit methods, multiresolution methods for curvilinear grids, and

multiresolution methods for triangular grids.

As far as explicit methods go, in the past year, we have created some algorithms for

the efficient computation of 2D tangent curves based upon our ideas of explicit solutions

to linearly varying vector fields. One of the types of methods we have developed are

(exact) incremental methods. We have done all of the mathematical work for the

extension of these methods to 3D and plan to implement and test these new 3D methods.

In addition, we have been testing some 2D methods which work directly in barycentric

coordinates. Barycentric coordinates allow one to discuss tangent curves (and other

descriptive visualization objects) in a context that is independent of the coordinate system

used for the data. This has several advantages including the ease of detecting which cell a

point (on a tangent curve) lines within. We are at this moment in the middle of doing the

mathematical development for the 3D situation. This is taking some effort, but it appears

that everything wilI eventually work out. Once the equations have been obtained, we will

implement the methods and compare and test them.

Points of attachment and detachment are special critical points (zero flow) on the

interior boundary (car body or airplane wing for example). They are very important in the

computation of topological methods. In the past, most of the literature on this topic was

not so rigorous. Using the exact solutions for linearly varying vector fields, we have been

able to give very precise definitions which lead to effective algorithms in the case of 2D

flows. We reported on this work in [i]. We are planning to extend this work to 3D.

Here, points of attachment and detachment will be replaced with edges of attachment and

detachment. We are hopeful that the same rigorous characterization and resulting

effective algorithms well exist in the 3D case.

Earlier, we developed some knot removal techniques which lead to a collection of

nested domains for 2D curvilinear grids. These nested domains were the necessary for

the multiresolution (wavelet) analysis for vector fields defined over 2D curvilinear grids.

We subsequently developed, implemented and reported on this research. See [1] and [4].

We want to extend all of this to 3D. We have already done the development for the 3D

nested grids and we now currently extending the Haar wavelets to this context. There

have been several snags along the way, but we feel that we can overcome this obstacles

and obtain the results which are comparable to our 2D work. We will implement these

new 3D Haar wavelets and test them on real data. Just as we were able to use "lifting"

techniques to extend the Haar wavelets to linear wavelets for the nested 2D curvilinear

grids, we hope to do the same for 3D grids.

Previously, we developed some new Haar wavelets for nested triangular domains as

shown in Figure 1. We have applied these new techniques to a variety of data sets

including slices of 3D flow around and automobile and weather data representing flow

over the earth. We have reported on these results in the submitted manuscripts [ 1] and

[4]. We are currently involved in testing the extension of these methods to higher order,

linear methods. For the next year, we want to extend all of these results to 3D. We were
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originally frustratedwith the basic mathematicswhen we first attemptedto use the
decompositionof Figure 5. This did not work out, but we arecurrentlyhavingsuccess
with the decompositionshownin Figure6. Someof the early mathematicalresultsare
mentionedabove. We will also use the basic building blocks of these techniquesto
developsomemethodsfor theadaptivevolumemodelingof 3Dvolumedata.
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Summary of Proposal for Research in 3 rd Year

• Explicit Methods

Implement and test algorithms for tetrahedra based incremental methods.

Continue development and implementation of 3D methods utilizing Barycentric

coordinates.

Develop the proper definitions and characterizations of the "edges of attachment"

and "edges of detachment" for 3D flows near an inner boundary.

• Multiresolution Methods for Curvilinear Grids

We have previously developed the 3D knot removal techniques for generating

nested domains for 3D curvilinear grids. We are also now doing the development of the

3D Haar wavelet in this context. We plan to complete this development and implement

and test these algorithms.

We propose to extend Haar wavelets for 3D curvilinear grids to piecewise linear

wavelets for 3D curvilinear grids.

• Multiresolution methods for nested tetrahedral grids

Using the subdivision as shown in Figure, we plan to further develop, implement

and test Haar wavelets for tetrahedral grids. We plan to extend these techniques for

higher order (linear) wavelets which should have more efficient compression and

approximation capabilities.

We plan to use the basic multiresolution techniques to develop some adaptive

methods for modeling volume data. This would allow details to be added and removed as

the user's attention is focused in different regions of the data.
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Budget

We are requesting funds for the principal investigator as follows:

Gregory M. Nielson
2 summer months

(see budget sheet for amounts)

We are requesting funds for two students:

Two ASU Graduate Students

9 months half time, 3 months full time

(see budget sheet for amounts)

We are requesting funds in the operations category as explained on the budget sheet.
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II.

[II.

IV.

V.

VI.

VII.

ESTIMATED BUDGET

PERIOD OF PERFORMANCE: January 1,1995 through December 31, 1997

SALARIES & WAGES

A. PI: Nielson

B. Co-PI:

C. Co-PI:

D. Co-PI:

E. Postdocs

F. Technicians

G. Graduate Associates

H. Graduate Assistants

I. Undergraduates

J. Secretary

0@

0@

2@

0@

O@

0@

Year 1 Year 2 Year 3

0.00 pm/AY + 2.00 pm/Sum $16,610 S17,607

0.00 pm/AY + 0.00 pm/Sum $0 $0

0.00 pm/AY + 0.00 pm/Sum $0 $0

0.00 pm/AY + 0.00 pro/Sum $0 $0

0.00 pm/CY 50 SO

0.00 pm/CY $0 $0

9.00 pm/AY + 6.00 pro/Sum $35,020 536,050

0.00 pm/AY + 0.00 pro/Sum $0 $0

0.00 pm/AY + 0.00 pro/Sum SO $0

0.00 pm/CY $0 $0

TOTAL

$18,663

S0

$0

S0

S0

SO

$37,767

50

S0

50

FRINGE BENEFITS

A. Faculty at 25%

B. Staff at 30%

C. Students at 3%

Summary

TOTAL

TRAVEL

OPERATIONS

A. Consultants

B. Publication/Page Charges

C. Photocopy, telephone, postage, misc,

D. Material & Lab Supplies/Equipment Use Fees

E. Computer Software

F. Lab Equipment under $500

G. Subcontracts

H. Participant Support Costs

I. Tuition 0 @ S1,895 per AY

J. Student Stipends

K. Other

(4 % escalation)

$52,880

$0

S0

S0

50

$0

$108,837

50

$0

S0

TOTAL

$51,630 ' $53,657 $56,430 $161,717

CAPITAL EQUIPMENT

$4,153 $4,402 $4,666 $13,221

SO SO SO 50

$1,051 $1,082 $1,133 $3,266

$5,204 $5,484 S5,799 S16,487

S0 $0 S0 50

TOTAL DIRECT COSTS

SO $0 $0 $0

$0 SO $0 $0

$500 $500 $500 $1,500

$1,000 $1,000 $1,000 53,000

$200 $0 50 5200

$0 SO $0 50

$0 $0 $0 50

$0 $0 $0 50

$0 $0 $0 S0

$0 50 $0 5o

$0 $0 SO $0

$1,700 $1,500 S1,500 $4,700

INDIRECT COSTS

Year I

Year 2

Year 3

52.0% MTDC

52.5% MTDC

52.5% MTDC

SO $0 SO SO

$60,641

VIII. TOTAL PROJECT COSTS

$58,534

S31,837

$30,438

563,729

$33,458

$97,187$92,478S88,972

S182,904

595,733
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Chapter 21

Tools for Computing Tangent
Curves and Topological
Graphs for Visualizing
Piecewise Linearly Varying
Vector Fields over

Triangulated Domains

Gregory M. Nielson, II-Hong Jung, Nat Srinivasan, Junwon Sung,
and Jong-Beum Yoon

Abstract. We describe some methods for computing tangent curves and topological

graphs for a vector field defined over a two-dimensional domain. We assume that the

vector field is piecewise linearly defined over a triangulation of the domain. Piecewise

explicit representations in terms of elementary transcendental functions form the basis of

algorithms for determining and displaying tangent curves. Topological methods which link

critical values with separating tangent curves are developed and discussed.

21.1 Introduction

Streamlines are a well-established visualization technique for investigating a vector field.

In this chapter we describe some new techniques for computing these invariant tangent

curves. Conventional methods for computing tangent curves consist of using numerical

methods for solving vector-valued initial valued problems. Euler's method is the simplest

and Runge-Kutta-type methods are often used in practice (see [3,24,39,41,49]). The issues

involved in selecting a particular algorithm usually focus on the two, often opposing, re-
quirements of accuracy and speed. Accuracy is especially important in the computation of

517



518
Tools for Computing Tangent Curves and Topological Graphs

tangent curves for topological methods. Erroneous results can easily occur unless special
provisions are taken to control errors. Speed is particularly important for interactive meth-

ods, but accuracy should not be discounted too much in this context since the goal of the
visualization is to impart meaningful and valid information. The methods described in this

chapter allow for a reasonable balance to be achieved between accuracy and speed.
A streamline (or tangent) curve is a parametric curve

P(t) = (z(t)y(t) )

that is everywhere tangent to the vector field. If

v(_:, u) = v(_, u)

represents a static vector field, then P is characterized by the equations

P'(t)=V(P(t)): (_(t))y(,, : (u(x(t),y(t)))v(x(t),y(t), " (21.1)

Typically there is an entire family of solutions for Equation (2 I. 1) and a particular solution
is selected with the initial condition

y(O) = Po = Y0 ,

In this chapter, we discuss methods for the special case where V(x, y) is a piecewise

linear function. The domain is decomposed into a collection of triangles and V has the
form

I/'(x'Y) = v(x,y) = a21x+a22y+b., = 4 +t3 (21.2)_ y

over each triangle. With this assumption, the tangent curve becomes a piecewise concate-

nation of curve segments with each segment associated with a particular triangle. The entry
point on a particular triangle provides the initial conditions for the constant coefficient ODE

which characterizes the curve segment for each triangle. The exit point serves as the entry

point for the next adjoining triangle domain. This basic idea is further illustrated in Fig-

ure 21.1. In this way, it is possible to completely characterize and know a tangent curve by
a sequence of entry (exit) points.

There are a variety of sources for the type of data covered here. If a 2D flow (or a 3D

flow assumed to be constant in one direction) is measured at a collection of scattered, planar
points, then the domain points can serve as the vertices for a triangulation of the domain.

The Delaunay triangulation of the convex hull would be a possibility. See Nielson [33]. We
will show examples later of a flow over a spherical domain which represents wind speed

and direction over the Earth. If the data is measured at scattered locations, these points can

serve as the vertices of a triangulation of the sphere and the methods of this chapter can be
applied. If the data is modeled, then the model can be evaluated on a triangular grid and

again the methods of this chapter will apply. Curvilinear grids which normally associate
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Figure 21.1: A composite tangent curve running across three triangles.

with simulated data can also be triangulated by simply inserting one diagonal or the other

into the quadrilateral ceils. See Figure 21.2.

The values A and B of Equation (21.2) for a particular triangle are determined from

the values of the vector field at the vertices of the triangle. If the vertices of the triangle are

labeled as in Figure 21.3, then the equations

atlxi + al2Yi q-

allzj + al_yj +

allcck + al__yk +

a21xl + a22yi +

a2xzj + a22yj +

a21Xk q-a22Yk '}-

bl : u(xi, yi)

bl = u(zj,yj)

b_ = u(zk,yk)

(21.3)

b2 = v(xi,yi)

b2 = v(xj,yj)

b_ = v(xk,yk)

will yield the values of A and B. It is also possible to use barycentric coordinates to find
these values. The details of this will be discussed later in Section 21.4.

The remainder of the chapter is organized as follows. In Section 21.2, we discuss

explicit methods which are based upon the fact that the differential equation which char-
acterizes a tangent curve is first order with constant coefficients and so an explicit solution

in terms of common transcendental functions is possible. Section 21.3 is concerned with

incremental methods which produce a sequence of points on the curve (or approximations)
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Figure 21.2: Triangulated curvilinear grid.

with the computation of each subsequent point based upon the previous point. Section 21.4
covers much of the same material of Sections 21.2 and 21.3, but within the context of

barycentric coordinates rather than the conventional Cartesian coordinates. Topological
methods are covered in Section 21.5.

21.2 Explicit Methods

In this section we describe what we call "explicit" methods. Because of the special nature

of the ODE which characterizes a tangent curve, it is possible to obtain explicitly defined
solutions and therefore, there is no need to use numerical methods to compute the values of

these curves. Library routines for computing common transcendental functions can be used

instead. Computing the exit point of a particular curve segment, which will serve as the

initial point for the next curve segment, amounts to computing the intersection of a curve

and a line segment. This is equivalent to a univariate root computation problem. We discuss

two general approaches to this intersection point calculation problem. Each approach is

covered in a subsequent subsection. In Section 21.2.1 we discuss the approach which is
based upon a parametric representation of the tangent curve and an implicit representation

of a line containing one of the edges of the triangle. The parametric curve is substituted

into the implicit line equation yielding a single equation in the parameter of the tangent

curve. The root of this equation yields the parameter value of the intersection point and

this point is subsequently tested to determine if it is actually on the edge (a subset of the

line). In Section 21.2.2, the second general approach is covered. It is based upon an

implicit representation of the tangent curve and a parametric representation of the edge of

the triangle. In this approach, the parametric representation of the edge is substituted into
the implicit representation of the tangent curve, yielding again a single, univariate equation.

The root is computed and used to evaluate the parametric representation of the edge so as

to obtain the intersection point.
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_........_ (U(Xk,yk),V(Xk,yk))

(u(x_,yj), v(x_,yj))

Figure 21.3: Notation and conventions used for data.

21.2.1 Parametric Tangent Curve, Implicit Edge

In this section, we discuss the general properties of a tangent curve for a linearly varying

vector field over a single triangular domain. In particular we give the details of a parametric
representation,

/

P(t) = (
_,(t)

y(t) )

(Implicit representations are covered in the next section, Section 21.2.2.) The curve enters

the triangle at a point P(0) = Po and then either attaches to a critical point in the triangle or

exits from the triangle at a point P(te) = Pc. We assume that the entry point is given and

so we need to compute, te, Pc, and the various coefficients of a parametric representation
of the curve from P0 to Pc, The value te along with the parametric representation are used

for displaying the curve and the value P_ serves as the entry point for the next triangle. If

Pe lies on one of the edges, then te must satisfy one of the equations

where

f_(z(t_),y(t_)) = O, a = i,j,k (21.4)

I,(_, _) = (_ - _)(y_ - _j) - (y - yj)(_ - _:_)

A(_,_) = (_ - _)(_ - y,) - (_- _)(_i - _,).

But not all of the roots of fa (x(t), y(t)), a = i, j, k are candidates to be re. It must be the
case that t_ is the smallest of these roots and that Pe is actually on the appropriate edge
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and not simply on the line containing this edge. The point Pc could potentially be on any
of the edges, including the edge containing P0, but some simple tests and modifications

can possibly eliminate some edges and portions of edges where Pc might be found. Along

an edge, the flow is either always in, always out, or there is a special point where the

flow is parallel to the edge and the direction of flow relative to the triangle changes at this

point. This is further illustrated in Figure 21.4. The change of direction point Pa is easy to

compute. For example, if the direction changes on edge ek, then

PA -_ te_ + (1- t)P_ (21.5)

where

tV_ + (1 - t)Wj - c(Pj - P_)

for some constant, c, and 0 < t < i.

out
in

out

Only two edges to search Only one edge to search

P.

J

No edges to search Only a subset to search

Figure 21.4: Exit point search strategy regions.
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We now turn our attention to the details of the parametric representation of the tangent
curve. The tangent curve

/

P(t) = ( v(t) )
x(t)

over a particular triangular cell is defined as

with the initial conditions

(x(t) ;(t)y(t) )=A(y(t))+B (21.6)

x(0) _o )y(O) ) = ( yo

The 2 × 2 matrix A and the 2 × 1 vector B are determined as in Equation (21.3) or equivalent

other means. (For example, see Section 21.4 on barycentric coordinates.) The general

solution of this initial value problem is of the form

(z(t))=y(t) P(t)=_I(t)EI+_(t)E,_+C (21.7)

where the particular functions q_l, _2, and the coefficients El, E._, and C depend on the

eigenvalues of A. There are five separate cases:

Case 1. A has two real, nonzero eigenvalues, 0 :fi rl _ r2 _ 0.

P(t) = etrl E_ + etr2 E_ + Pc, (21.8)

(_ A---viI (Po - Pc), E2 (Po - Pc), APe + B = O.
E1 : \ 7"1 _ r2 \ r2 -- rl ]

Case 2. A has one zero and one nonzero eigenvalue, 0 = rl, r2 :fi 0.

P(t) = tEl + (e tr2 - 1) E2 + Po, (21.9)

Case 3.

El= I- A B, E2=r2

A has only a zero eigenvalue, rl = 0 = r2.

P(t) = tE_ + t_'E2 + Po, (21.10)

AB
EI = APo + B, E2 = _.

2
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Case 4. A has a single real, nonzero eigenvalue, rl = r2 # 0.

P(t) = e trl E1 + te tr_ E2 + Pc, (21.11)

Case 5.

Et = Po - Pc, E2 = (A - eli) (Po - Pc), AP_ + B = 0.

A has complex eigenvalues, # + Ai, t-*- Ai, A # O.

P(t) = cos(At)eUtE1 + sin(kt)e_t E2 + Pc (21.12)

&=Po-P. E_.= (A-_Vl) (& - PC), APe+B=0.

In Cases 1, 4, and 5, A is nonsingular and it is guaranteed that there is a unique critical

value satisfying APe + B = 0. In Cases 2 and 3, it is possible that no critical values exist

or even that an entire line of critical values exist. Not all cases occur with equal frequency.
Cases 1 and 5 are the predominate ones, Cases 2 and 4 are much less likely to occur, and

Case 3 is extremely rare. This is explained by taking a look at Figure 21.5. In this example,

we determined the case for a triangle where we varied the value of the vector field at one

vertex of the triangle. The flow at two of the vertices is fixed and illustrated by the arrows
drawn at these vertices. The flow at the vertex marked with the white circle is taken be a

vector which is based at the vertex and emanating out to an arbitrary point in the plane.

We classify this point on the basis of the case classification associated with this flow. The

interior to the parabolic bounded region is Case 5. The boundary is Case 4 except for the
degenerate subcase of Case 3 indicated by the black box on the boundary. Case 2 consists

of a line tangent at this point. Of course the tolerances used for determining these regions

affect their relative occurrence in actual practice. It is interesting and instructive to look
at some examples of tangent curves for the various cases. We have included samples for

each of the cases in Figure 21.6. The data for these examples is the same as in Figure 21.5.

The boxes of Figure 21.5 indicate the tip of the one vector of the triangle for the particular

example of Figure 21.6. In each of these images, the triangular domain is shown along

with arrows at each vertex indicating the flow at these points. Particular tangent curves are
determined by using initial values along a particular edge. We use 10 equally spaced points

along these edges. The flow is shown at each of these initial points and the tangent curve

is traversed out in both negative and positive parameter domain for a fixed amount. Some
additional examples are shown in Figure 21.7. For these examples, the flow data at each

vertex is indicated by the line segment and again we use initial values at 10 equally spaced

values along an edge and the tangent curves are traversed out in both positive and negative

parameter directions.

Displaying the tangent curve and computing the roots for the determination of te de-

pends upon the evaluation of P(t) given in its various forms by the five cases above. De-
pending upon the computing resources available, it is possible to structure efficient meth-

ods for performing these computations. In some cases, it is desirable to compute P(iAt),

i = O, 1,2,..., where At is some fixed increment of the parameter t. This may be the case

in a situation where these values are used to display the curve and the curve is determined
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(0__0)

/ (v,=r2_0)
/

Figure 21.5: The five case regions.

to exit the triangle once one of the functions f,, fj, or fk (of Equation (21.4)) is found
to change sign from aA_ to (a + 1)At. The exponentials of Cases 1, 2, 4, and 5 can be

computed by the computation of a single exp(At) and subsequent multiplications. The sin

and cos functions of Case 5 can be computed with the formulas

sin(t + At) = cos(t)sin(At) + sin(t)cos(At)

cos(t + At) = cos(t)cos(At) - sin(t)sin(At).

We should also point out that the formulas which form the basis of the incremental methods
of Section 21.3.2 can also be used to evaluate the curve at equally spaced parameter values

for display purposes.

21.2.2 Parametric Edge, Implicit Tangent Curve

As we have previously mentioned, there are two general approaches to computing the exit

point P(t_). A parametric representation for the tangent curve can be substituted into

an implicit representation for the line segment as in Section 21.2.1. Or a parametric (or

explicit) representation of the line segment can be substituted into an implicit representation
of the curve. In this section, we discuss the latter approach. In this approach, either an

explicit, y = ax + b or x = cy + d, or a parametric (z(s), y(s)) = sPi + (I - s)Pj, is used

to represent the line segment and an implicit representation

Y(x(t), y(t)) = 0
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• i //_

Figure 21.6: Examples of tangent curves for all five cases.
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Figure 21.7: Additional examples of tangent curves. (Upper-left) Case 1 with vl • r2 < 0.

(Upper-righO Case 1 with rl • r2 > 0. (Lower) Case 2.
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i) y(x, aa:+ b),

ii) F(c 9 + d, Y),

iii) F(a_(s), y(s)),

is required for the curve. For the edge e_, this leads to one of the following root finding
problems:

_i,_ {v, , y_} <_u < ,_a_ {y, , yj }

0<s<l.

Up to now, the missing component for this approach is an implicit representation of the

streamline curve. We now take up this topic. Again, there are five separate cases. In each of

the five cases covered below, there are specified two vectors, E1 and E2. We let E = (E:,

E2). If IEI _ 0 then the two vectors E1 and E2 are linearly independent, and we can use
the change of variables

= E + C. (21.13)
y Y

The point C is either P0 for Cases 2 and 3 or Pc for Cases 1, 4, and 5. We now give the

details for each separate case.

Case 1. (0¢rlCr_.¢0)

If ]El _ 0 then the change of variables of Equation (21.13) with C = Pc changes the

parametric curve to

which leads to the implicit equation

F(X, Y) = X _ - Z_' = 0

with X, Y > 0 and t = tn(x) = tn(Y).
-- r 1 F2

(21.14)

If IEI = 0 then Po is on one of the lines passing through Pc in the direction of the

eigenvectors of A, and either E1 = 0 or E_ = 0 (or E1 = E_ = 0 if P0 = Pc). The

tangent curve will be a straight line. If E'2 = 0 then an implicit equation for the tangent
curve is

F(2g, _l) = (x -- xc)e21 -- (y- _]c)6'11 = 0

and in the case that E: = 0, we have

f(x, u) = (_ - _c)e22 - (y - v_)e1__= 0

Note that these last two implicit equations are in terms of the original variables, (z, !,'). See

Figure 21.8.
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Y

o<r2/ rl<l

X

Figure 21.8: Typical curves in the transformed variables for Case 1.

Case 2. (0 = rl, r2 :_ 0)
If IEI _ 0, then the change of variables given by Equation (21.13) with C = Po will

yield

x(t) = t

Y(t) = e tr2 -1

and

with X > 0,

IflE [ _-
equation

F(X,Y) = Y- e "_x + 1 = 0 (21.15)

Y_>-I, t= X.

0, then either E_ = 0 and (in the original variables) we have the implicit

(X -- z0)e21 -- (U-- Y0) ell = 0,

orE1 =0andwe have the equation

(z - zo)e_ - (u - uo)el_=0

See Figure 21.9.
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r2< 0
r2> 0

Figure 21.9: Typical curve in the transformed variable for Case 2.

Case 3. (7"1=0=1"2)

IflE I :_ 0, then Equation (21.13) with C = P0, can be used to obtain

Y-X 2=0, X_>0, Y>0; t=X=v/} 7. (21.16)

If [E I = 0, then K.2 = 0 and (in the original variables) we have the implicit equation

(z- Zo)e_.1 - (y- yo)e11 = O.

Case 4. (r1=r-:fi0)

If IEI ¢ 0, then the change of variables of Equation (21.13) leads to

Y
Xln(X)-rY=O, X,Y>O. t=--. (21.17)

If IEI = 0, then the implicit equation (in the original coordinates) is

(_ - _)(yo - y_) - (y - y_)(_o - _) = o.

Case 5. (_+Ai,/t-Ai, A¢0)

The change of variable given by Equation (21.13) leads to

-- = tan ln(X" + ye t = (21.18)
X '
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21.3 Incremental Methods

The basic idea behind incremental methods consists of starting at the entry point P(O) =

P0 and then successively computing P(ti), i = 1, 2, 3,... for increasing values of the

parameter t and stopping when P(ti) leaves the triangle. These successive values that
are computed along the way to finding the exit point can also be used as the basis for

displaying the curve. Often it is efficient and convenient to use equally spaced values of

the parameter; that is, ti = iAt, i = 1, 2, 3,.... At least this can be the default strategy

and the value of At can be adjusted every so often, depending on accuracy estimates or the

spacing requirements between P(t) and P(t + At).

In this section, we cover two types of incremental methods. In Section 21.3.1 we dis-

cuss briefly the application of conventional methods such as Euler's and Runge-Kutta to

the special case at hand of linearly varying vector fields. In Section 21.3.2 we discuss some

incremental methods for computing values on the curve which are based upon the exact so-
lutions which were explicitly given in Section 21.2. Before we proceed, we wish to briefly

discuss two topics that come up in the implementation of incremental methods. Namely,

how to choose At and how to test when the curve leaves the triangle. We take up the latter

topic first.

The functions f i (x ,y ), f j (z ,y ) , and f k ( x , y) of Equation (21.4) were carefully defined

so that f_ (x, y) > 0 for points (x, y) on the same side of e_ as P_, a = i, j, or k. This

assumes that the points Pi, Pj, and P_ are listed in counterclockwise order. So by testing
these functions, we can determine if the next point leaves the triangle and also which edge

it leaves from and this can then be used to determine the data for the next triangle it enters.

A particularly efficient way to compute all three values is based upon the identity

f(z, y) = x(f(1, 0) - f(0, 0)) + y(f(O, 1) - f(0, 0)) + I(0, 0) (21.19)

where

( :_(_,v) )
:(x,v) = :i(x,v) •

A (_, v)

As we previously mentioned, it is sometimes useful to be able to approximately control

the distance between P(t) and P(t + At) by choosing an appropriate At. Say, for example,
it is desired that

liP(t + At) - P(t)ll _ 5.

The mean value theorem implies

P(t + At) - P(t) = AtP'(r),

Equation (21.6) then yields

P(t + At) - P(t) = At(A(P(r) + B),

Now a local estimate as in

5
At =

llAP(t) + B)II

t<r<t+At.

t<r<t+At.
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can be used or an overall estimate as in

At =
maz{ll¼1I, I1_11,IIVkll}

This last estimate is based upon the property that I]AP + Bf is bounded by (max{ll%ll,
I1VIII, }}Vk}l }) for P in the triangle of interest.

21.3.1 Conventional Methods Applied to Linearly Varying
Vector Fields

It is possible to treat Equation (21.1) as an ordinary differential equation and to use standard
and conventional numerical methods to compute approximations to P(t). The most popular

numerical methods in this context are incremental methods. The particular computational

formulas for a sampling of these methods are:

Euler's:

P(t + At) _ P(t) + At. V(p(t))

Runge-Kutta 2_ Order:

P(t + At) _- P(t) + ½(Vl + V2)

_\ = _t. v(P(t))

I,S = At. V(P(Q + Vt)

t •
P(t + At) = P(t) + __(_ + At. V(P(t) + V_))

Runge-Kutta 4 th Order:

P(t + At) _ P(t) + -_

Vl = at V(p(t))

I

1 ,½ = _xt V(p(_) + _)

z[ v,v_ : at v(p(t) + _ "a)

Adaptive Runge-Kutta-Fehlberg:

6656 __856_. _oV_+ _v6P(t + At) -=P(t) + _v_ + 0V._+ _V_ + _--_ _ -

_ _; +error estimate = a-_V1 + 0V._ - _V3 7-gS___402t97V,4+. _V6°

t
V2 = At. V(p(t) + _Vz)
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v_ = _xt. v(p(t)

v_= _t. v(p(t)

75= _t. V(p(t)

76 -- _t. 7(p(_)

1932 II 7200 Tr 72961I
+ _-i_vl - _--f_-iv2+ "fiTCV3)

439 3680 T_"+ _vl - 8v2 + 5-_ v3- _¼)
3544 _, 1859 T7 ii V_ _-_V_+2V2-2--_ 3+ 4-i_,'4- _ 5?

The above formulas can be simplified somewhat when the special property that V(P) =
AP + B is utilized. The formulas in this case become:

Euler's:

P(t + At) _- (I + AtA)P(t) + AtB

Runge-Kutta 2_d Order:

P(t + At) "_=(I + AtA + _)P(t) + At(I+ TAtA)B

Runge-Kutta 4 th Order:

( (4 at_-L4_-_P(t) + At _3=o (i+U!)P(t + At) _ _--_i=o ir )

Adaptive Runge-Kutta-Fehlberg:

((_tA)_prt_ + At _4=o 2o8o )P(t + At) _ E,=o (_tA)' (AtA " (_tA)5_i! + 2080 _ J (i+1)! + B

Error Estimate _ (AtA)S( 2080AtA7_-60)

21.3.2 Incremental Methods for the Exact Solution

Here we are looking for a formula of the form

P(t + At) = C(,_t)P(t) + H(',t)

which will allow computation of points at equal parameter values on the curve to be com-

puted with only the application of an affine transformation. Repeated application of the
basic differential equation which characterizes P(t) leads to

P'(t) = AP(t) + B

P"(t) = AP'(t) = A2P(t) + AB

P"'(t) = Apr'(t) = A3p(t) + A2B

which leads to the expansion

(AtA) 2
P(t + At) = (I + AtA + +...)P(t)

2_

+v,t + + + ...)B
E(At)P(t) + F(At)B
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where E(At) = [ + F(At)A. Both of these series for E(At) and F(At) have limits that
can be approximately calculated in a variety of ways. One, of course, is to simply truncate

the series. If we utilize the expressions for the solution given in Section 21.2.1, we arrive

at the following particularly efficient methods which rely only upon the need to compute

the functions e t, sin(t), and cos(t).

The matrix E referred to below is (El, E2) where these two vectors are defined in the
different cases covered in Sections 21.2.1 and 21.2.2.

Case 1. (13:/:rl#r.¢13)

If IEI # 0 then

e_tr tP(t + At) - Pc = E 0 0 )E_te_,,_ (P(t) - Pc).

If IEI = 0 then P0 is on one of the lines passing through Pc in the direction of the

eigenvectors of A and either E1 = 0 or E2 = 0 (or E1 = E.2 = 0 if Po = Pc). The tangent

curve will be a straight line and so

P(t + At) = P(t) + At(P_ - Po).

Case 2. (0 = rl, r2 _ 13)

P(t + At) = [[ + (e Atr; - 1) AlP(t) + At[I +
r2

(e 'at'2 - Atr_. - 1)

Atr_ AJB.

Case 3. (rl = 0 = r2)

(At) 2A , n
P(t + At) = (I + AtA)P(t) + (At + _ )t_.

Case 4. (rl =r2¢0)

If/E I ¢ O, then

P(t + At) - Pc = Ee Atr_ (
1

At

IflE I = 0, then P(t) is a straight line and so

P(t + At) = P(t) 4- At(Pc - Po).

Ol ) E-I(P(t)- Pc).

Case 5. (/_+Ai,#-Ai, A#O)

(cos(hAt)P(t + At) - Pc = E e'At sin(AAt)
-sin(AAt)

cos(,\At) ) E-I(p(t) _ pc).
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21.4 Working Directly with Barycentric Coordinates

In this section, we discuss the representation and computation of tangent curves using

barycentric coordinates rather than conventional Cartesian coordinates. There are some

potential advantages to the use of barycen_c coordinates depending upon the particular

application. One advantage to barycentric coordinates is that it is trivial to determine

whether or not a point on a tangent curve is inside the triangular domain or not, as aI1

three barycentric coordinates must be positive in this case. Another less obvious advan-

tage is for applications where the triangular domain is not located in the normal xy-plane.
We will show some examples of this later where the triangular domains consist of a trian-

gulated approximation of the sphere. Here, even though the flow vectors are 3D vectors,

they are in the plane of the domain and so all that we have developed in this chapter still

applies. It would be possible to use a 3D affine transformation to move the problem to the

plane, solve it, and transform back. But there is no need to do this transformation if we do

all calculations in barycentric coordinates. But it should also be noted that most graphics

routines require Cartesian coordinates and so the particular application environment has to
be taken into consideration.

For completeness, we give some background on barycentric coordinates. Given a point

barycentric coordinates, bi, b d, and bk of this point relative to the triangle Tiju with vertices

Pi, Pj, and Pk are defined by the relationships

( x)y = biPid-bjPj+bkPk

(21.20)

1 = bi + bj + bk

There are several alternative ways of defining or determining the barycentric coordinates

of a point. For example,

Ai Aj Ak
= = b, = -X-'

where At, A s, and Ak represent the areas of the subtriangle shown in Figure 21A0 and A

is the area ofrijk. Also,

IY-- Yk Yj - Yk Y- Yl Y¢- Yk
, bj =

Yi - Yk Yj -- Yk Yj -- Yk Yi -- Yk

bi --

bk -"

I x-xj xi-xj ]y-y_ y_ -y_

I IX k -- Xj x i -- Xj

Yk -- Yj Yi -- Yj

(21.21)
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W.

Aj

A k

(x, y)
A i

vk

vj

Figure 21.10: Areas leading to barycentric coordinates.

We can note that hi, bj, and bk are simply linear functions of x and y. In fact, bi is

just the linear function which is one at Pi and zero at Pj and Pk. It will be convenient to

explicitly denote this dependence so that we have

bi=bi( x)y

and the relationship

= Pibi + Pjbj + P_,b_ = (P,, P:, Pk)
Y Y Y Y

bj x
Y

X

bk Y

Also we will denote the column vector consisting of the three barycentric coordinates as

ba x
Y

It can be noted that

z 1 o1 )+(l-x-Y)b(o )
(21.22)
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and

b(_P + (1 - _)Q) = _b(P) + (1 - a)b(Q). (21.23)

The 3 x 3 matrix whose columns consist of the barycentric coordinates of the three flow

vectors at each of the vertices will be denoted by

y = (b(v_),b(5.), b(Vk)).

It should be noted that if

Q = qj

qk

has the property that qi + qj + qk = 1 (as will be the case when Q represents the barycentric

coordinates of a point) then VQ will have this same property. It is also true that ifqi + qj -t-

qk = 0 then the entries of VQ will also sum to zero.

It is easy to verify that

1 0

and

1 0 (21.24)

A ( X ) + B=(Pi Pj,Pk)Vb ( x )y, Y . (21.25)

Also

0) b(B)Vb 0 =

and if there exists a point Pc such that

then

(o)APe+B= 0

o) = Vb(&),b 0

We should point out that the 3 x 3 matrix V has the same eigenvalues as A and ifAE = rE

for a 2D vector E and scalar r, then

o o)1

In addition V has the eigenvalue 1.
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The tangent curve P(t) which was previously given in Cartesian coordinates will be

denoted in barycentric coordinates by

p(t) = b(P(t)) = bj(t)
bk(t)

and the basic differential equation which characterizes P(t) now takes the form

(0) (21.26)p'(t) -----Vp(t) - b 0

withp(0) = b(Po).

Using the same notation as in Equation (21.7) we can now represent the tangent curve
which is the solution of Equation (21.26) in barycentric coordinates by

o [b(z_) - b op(t)=(Ih(t) [b(El)-b(o )] +4p2(t) (0))+b(C) (21.27)

where, as before, each of the cases selected by the eigenvalues of,4 (or V now) determine

the bases functions _I'1(t) and '/_2(t) and the vectors E_, E2, and C. We now discuss

incremental methods in terms of barycentric coordinates. In this context we are looking for
a formula of the form

p(t + At) = g(At)p(t) + h(At). (21.28)

Similar to before, we can use repeated applications of Equation (21.26) to yield

p(_+ _xt)
(AtV) 2

- ([+AtV+ 2------[_.+...)p(t)

(At)2V (At)3v _- (o)-(_xtz + 2----Y--.+ 3----7--.+ )_ o

(o)---- e(At)p(t) + f(At)b O " (21.29)

Also, we can note that e(At) = I + f(At)V. These series for e(At) and f(At) can

be approximated in a variety of ways. As we saw earlier, if we truncate the series, then

we have the equivalent of an Euler or Runge-Kutta method applied to the special case of
linearly varying vector fields. The same type of results holds in the case of barycentric
coordinates. The results are:
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Method e(At) f(At)
Euler

Runge-Kutta
2'_a Order

Runge-Kutta
4 th Order

Adaptive Runge-
Kutta-Fehlberg

Adaptive Runge-

Kutta-Fehlberg
error estimation

(I + Atv)

(I + AtV + ½At'zV z)

(I + AtV + _At'_V "_

+_zxt3v 3 + _zxt'v 4)
(I + AtV + ½At_V "z

1 3 3 1 4 4
+gAt V +_At V

+ l@6AtsV5 + 2o--_At6V 6)

_---L--At6V6)(_ AtsV_ + 2o8o

-(_xti)
-(AtI + _t_v)

-(AtI + _At'_V
+ 1-AtaV_'+ !At4V z)

i 3 2 I 4 3
+gAt V +_At V

1 5 4 1 6 5
+l.--_oAt V + ,--_At V )

-'1 At5V5 ÷ 2o-_At6V6)--( 780 _v --

Similar to what was done in Section 21.3.2, we can develop exact representations uti-

lizing transcendental functions. The details for the various cases follow. The matrix D
referred to below is

(b(E1) _b ( O 0

and D + = (DeD)-ID t. The two vectors E1 and E2 are defined in the different cases

covered in Sections 21.2.1 and 21.2.2.

Case 1. (0 -¢ rl 7_ r2 ¢ 0)

IflEI ¢ 0, then

e z_trl 0 )p(t + At) - b(Pc) = D 0 eatr = D + (p(t) - b(P_)).

If IE[ = 0, then P0 is on one of the lines passing through Pc in the direction of the

eigenvectors of A and either E1 = 0 or E2 = 0 (or E1 = E2 = 0 ifPo = Pc). The tangent

curve will be a straight line and so

p(t + At) = p(t) :t: At(b( Pc) - b( Po) ).

Case 2. (0=rl,r2¢0)

p(t+At) = ( I+Vr-2 (V_-l)(eAtr__l)+V(r2/-V)r2 (eat-1))p(t)

- 0

V (r2/ V),eAr_Ar_l))b(o )"+_\ r2
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Case 3. (rl=O=r2)

p(t + At) = (I + AtV + (e A' - At-1)V2jp(t)

(/kt)2V (At)"
-(At[ + _ + (eat

2 2
0

At-1)V2)b(o )-

Case 4. (rl=r2#O)

If IEI -¢o,then

P(t+At)-b(Pc)=DeAt_ ( Atl 01 ) D+(p(t)-b(Pc))

If IE{ = O, then the tangent curve is a straight line and so

p(t + At) = p(t) 4- At(b(Pc) - b(Po)).

Case5. (_+hi,/_-hi, h#O)

p(t + _t) - b(P_)

( cos(h_t)= DeU'at sin(hAt) -sin(A_t) >cos(hAt) D+(p(t) - b(Pc)).

21.5 Topological Methods

Topological methods provide a clear and uncluttered means of visualizing a two-

dimensional vector field. They give a good overview of the flow with relatively little in-
formation, but they can require some effort to compute. They were first introduced into

the visualization literature by Helman and Hesselink [ 17]. They consist of a collection of

tangent curves which separate the flow into regions. The tangent curve boundaries of these
regions connect together certain critical points. Critical points are locations where the flow
is zero.

In a nutshell, there are two main steps to computing a topological graph. First, all

critical points are computed and classified on the basis of the nature of the flow near the

critical point. In the second step, certain tangent curves are started at critical points and

traversed out until they either link up with other critical points or leave the domain. In this

section, we will discuss what is necessary to compute a topological graph within the special

context of this chapter which is piecewise linear vector fields over triangulated domains.

An example of a topological graph is shown in Figure 21.11.
We now discuss some details of the critical point computation and classification step of

the algorithm. In a general context with the vector field

v(_,y)= _(_,_) ,

a critical point, Pc, is simply a position where

v(xc,pc) = 0 "
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bi

Figure 21.11: A topological graph of a two dimensional vector field.

The local behavior close to a critical point is determined by the Jacobian

J(xc,yc)= v_(xc, yo) v_(x_,yc) "

This is due to the fact that the flow field is approximated by the linear terms of its expansion
near the critical point. That is,

V(P) _- V(Pc) + (P - P¢)J(Pc) -= (P - Pc)J(Pc).

Using techniques similar to those used in Section 21.2. I, it is determined that there are six

different types of critical points (see Figure 21.12):
i) Saddle Point

ii) Attracting Node

iii) Repelling Node
iv) Attracting Focus

v) Repelling Focus

vi) Center

J(P_) has two real, nonzero eigenvalues which differ in sign

J(P_) has two negative eigenvalues
J(Pe) has two positive eigenvalues
J(Pc) has complex eigenvahies ,u + Ai, # - Ai, A _ 0, _ < 0

J(Pc) has complex eigenvalues ,u + Ai, # - Ai, A :_ 0,/_ > 0

J(P_) has purely imaginary eigenvalues +Ai and -Ai, A :_ 0

In general, the computation of critical points can be a rather formidable problem. For
example, in the case of curvilinear grids, cells must be searched for possible candidate

cells and then a nonlinear system (two equations in two unknowns) of equations must

be solved. This normally requires some iterative method which could possibly fail to

converge or converge to a point which is actually not a critical point. In the case of a

linearly varying vector field, the situation is much simpler. Only the linear system
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point + & - /'!A center _ = 0

\ / ///

repelling + & + repelling

[I node j focus _ > 0 i

real complex

Figure 21.12: Characterization of critical values.

must be solved. Note that A and B are defined the same as earlier in Equation (21.2). We

next determine if this is a "real" critical point by deciding whether or not Pc is actually
in the triangle. This determination can be made by computing the barycentric coordinates

of Pc (or possibly a scaling of them) and checking to see if all three of them are positive.
More discussion on barycentric coordinates can be found in the previous Section 21.4.

Often, a flow field will have an interior boundary which represents an object about

which the flow is being analyzed. All the points on this interior boundary are critical points
as the flow is forced to be zero here. Some of these points are of special interest. These are

the points of attachment (at) and detachment (de) which belong to tangent curves which
separate the flow along and near the inner boundary. In some previous discussion in the

literature, the characterization of these points has not been so rigorous, but here in the

context of piecewise linear flow fields, we can be very precise. Consider a triangle with

only one vertex on the inner boundary. This vertex will necessarily be a critical point. If the
eigenvalues of the Jacobian for this triangle indicate that this critical point is classified as a

saddle point, then it is a candidate for a point of attachment or detachment. It will be a point

of attachment if the eigenvector (or its negative) associated with the negative eigenvalue

lies between the two edges of the triangle sharing this critical point. If an eigenvector

associated with the positive root lies in the triangle, then this critical point will be a point
of detachment. See Figure 21.14.

It should be noted that it is possible for a single point to be both a point of attachment

and a point of detachment. This is illustrated in Figure 21.15. We should also point out that

it is possible for a single point on the inner boundary to belong to two different triangles

which have only this point on the inner boundary and because of this, this single point
could be classified as a certain type of critical point for one triangle and another (or the

same) type of critical point as a vertex for a different triangle. An example of this is shown
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Figure 21.13: Bottom critical point is "real," but not the top one.

in Figure 21.16 where the critical point on the upper-left portion of the inner boundary is a

point of attachment for one triangle and a point of detachment for an adjacent triangle.

The second major step in computing a topological graph consists of the linking al-
gorithm. From each saddle point which is interior to a triangle, four tangent curves will

emanate---two associated with each eigenvector of the Jacobian. One curve emanates in the
direction of the eigenvector and one in the negative direction of the eigenvector. The curves

emanating in the directions of the eigenvector associated with the positive eigenvalue will

be traversed in positive parameter direction and these curves will move along with the flow.

They have the chance to link up with attracting nodes or foci or possibly other saddle points

along the eigenvectors of inward flow to the saddle point. The two curves emanating in the

direction of the eigenvectors associated with the negative eigenvalue will be traversed in
a negative parameter direction and will move along in a direction opposite (or negative)

to the direction of the flow field. They have the chance to link up with repelling nodes or

loci or other saddle points. From each point of detachment, one curve will emanate and be

traversed in positive parameter direction. From each point of attachment, one curve will
emanate and be traversed in a negative or opposite direction to the flow. The algorithm is

complete when each of these curves has linked to another critical point or leaves the domain

either by encountering the outer boundary or the inner boundary. An example of the results

of this algorithm are shown in Figure 2 I. 16. We should point out that this linking algorithm

does not produce all separating tangent curves for it is possible that in addition to the center

points, some repelling or attracting nodes or foci could be left unconnected to any tangent

curve. However, this does not occur when the domain is a triangulated approximation to

the sphere.
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\\,

I Inner Bound/

Figure 21.14: Diagram to support definition of point of attachment.

21.6 Examples

The first example that we include uses a simple quadratic equation to specify the vector

field. The equations are given in Equation (21.30). One reason for including this type of

example is to allow other implementors to easily verify and compare their software results.

u(z, u)

y)

= -0.103209 + 0.0515[lx- 0.302699y

+0.037546xy - 0.232875x 2 + 0.611528y 2

= 0.143656+ 0.687847x- 0.144779y

-0.213010xy - 1.029676x _ + 0.246278y _

(21.30)

As we have mentioned earlier, the methods described here can be applied to any tri-

angulated domain. In Figure 21.18 we show the topological graph and some additional

tangent curves (in cyan) for a vector field defined over a triangulation of a spherical do-

main. Similar to Figure 21.17, two different resolutions of the triangulation are shown. In

the right column, each triangle of the left column has been replaced by four subtriangles.
We have intentionally used flat shading rather than Gourard shading for the rendering of

the sphere so that the triangulation is apparent.
In the next example, we illustrate the use of the methods developed here to visualize

a multiresolution model of a vector field over a curvilinear grid. The topological graph is
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Figure 21.15: A point on the inner boundary which is both a point of attachment and a

point of detachment.

shown at four different levels of approximation in Figure 21.19. One unique feature allowed

by these methods is that no matter how coarse the resolution becomes, the boundaries

have not changed from the original data. This is a particularly important aspect for the

inner boundary which is often the focus of attention for a flow analysis. In Figure 21.20,

we show the topological graph for some partial reconstructions of the flow field. These
methods allow the user to zoom in and out and only reconstruct the portion of interest.

In Figure 21.21 we show results similar to those of Figures 21.19 and 21.20 except that

now the domain is a triangulated sphere and the reconstruction is not done on the basis

of regions, but on the basis of the magnitude of the coefficients of the wavelet basis func-

tions. This data represents "real" data provided to us by Roger Crawfis and Nelson Max
of Lawrence Livermore National Laboratory. It is one time step and one tier of simulated

wind velocity data.

The data used for the examples shown in the images of Figure 21.22 and Figure 21.23
was provided to us by Yasuo Nakajima, Nissan Motor Company, Japan. Actually, the

domain of this data is three-dimensional and not two-dimensional as required for the algo-

rithms covered here. Figure 21.23 shows one slice through this 3D data. The 3D velocity
vectors were projected into the plane of the slice. Many of the results of this chapter have

been extended to 3D domains where the vector field is assumed to vary linearly over a tetra-

hedrization of the domain. See [33] for more discussion on tetrahedrizing a 3D curvilinear

grid. The tangent curves and critical points shown in Figure 21.22 were computed using
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/

/

/

Figure 21.16: Topological graph for a curvilinear grid. A point on the inner boundary is

both a point of attachment and a point of detachment.
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Figure 21.17: Explicit method used to compute topological graph for vector field given by
Equation (21.30). Two different resolutions for the triangulation are shown.

extensions of the algorithms discussed here. See [22] for more details.

21.7 Conclusions and Remarks

.

.

One of the advantages of the explicit methods we have developed here is that accu-
racy can be monitored and controlled• Runge-Kutta and other incremental methods

for solving ODEs are notorious for "wandering off" the true solution and once an

error is made, there is no way to recover because from the erroneous point forward,

the method is attempting to solve a different (wrong) problem than the one it set out
to solve in the beginning. Variable step size methods which estimate the error and

attempt to control it by adaptively changing the step size are helpful in this regard,

but the problem is that the error is only estimated and only guesses about the prox-

imity of the computed solution to the desired solution can be made. This is the case

for the R-F-K method covered in Sections 21.3.1 and 21.4. In the proposed method,

the accumulated error is a result of how accurately the intersection of a cell boundary
and a particular explicitly defined tangent curve are computed. This is formulated as

a root finding problem and so this computation can be done as accurately as deemed

necessary.

Another advantage of the present method is speed and efficiency. Since the tangent

curve is known explicitly for each triangle, parameters pertaining to this definition

can be precomputed and stored and then used when a particular tangent curve pene-

trates this triangle. The global shape of the tangent curve is known by its sequence

of entry and exit points for each triangle it intersects and so the overall appearance
of the curve is not seriously degraded if a local approximation for each cell is used.

We have used a parametric cubic Hermite curve on each triangle with good success.
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Figure 21.18: Explicit method used to compute critical values and tangent curves for a
vector field defined over a spherical domain.
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Figure 21.19: The explicit method is used to compute the topological graph for several
different resolutions of a curvilinear grid.
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Figure 21.20: Partial wavelet reconstruction of the flow over a curvilinear grid indicating
the efficiencies of zooming in or out.
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Figure 21.21: Topological graphs for wind data over the earth are computed using the

explicit method. The right column is wavelet reconstruction based on the largest 3% of the
wavelet coefficients.
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Figure 21.22: The explicit method is used to compute tangent curves linking critical values
for a 3D vector field.
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Figure 21.23: One slice of the data of Figure 21.22 showing the topological graph.
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3. Because of the general nature of the approach of the methods covered here, they can
be extended to any domain which consists of a collection of triangles. This includes
manifolds of arbitrary topological type ifa triangulated approximation of the domain
is acceptable.

. The computation of critical points is greatly simplified, Critical points are crucial

to topological methods. If the vector field which has been defined by a particular
cell and extended to the entire domain of E _ has a critical value, then it can be

computed by solving a linear system of equations. A solution to the linear system
of equations is a "real" critical value for the piecewise defined vector field if it lies

within the cell, otherwise it is not. Normally, the computation of critical values

requires a rather tedious computation involving testing whether or not a cell might

have a critical value, followed by the solution to a nonlinear system of equations by

Newton's methods or some other iterative scheme. See [ 17], for example.

. The last advantage we mentioned is that the present method does all of its compu-
tations in physical coordinates as opposed to computational coordinates. To some

this might initially appear to be a disadvantage since computational coordinates are
introduced for the specific purpose of their namesake. But if the domain is triangu-

lated and linear variation is assumed over each triangle, we not only gain a method

that is affine invariant, but there is no need to map the data to computational coordi-

nates, solve the problem and map the solution back; we simply compute the solution
directly in physical space.

. We first mentioned the basic ideas of these methods and reported on some prelimi-
nary results at a presentation given in 1991 at the first Dagstuhl Seminar on Scientific
Visualization. At this time, Nelson Max pointed out that he had mentioned the idea

in an earlier paper [29]. Sawada [42] has also mentioned the idea of using explicit
representations. We presented some preliminary results on the 3D extension of the

methods covered here at a technology assessment workshop held the Summer of

1993 in Darmstadt, Germany. See [40] for the proceedings of this workshop. Fig-
ure 21.22 has previously appeared in [34].
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Chapter 20

Tools for Triangulations and
Tetrahedrizations and

Constructing Functions
Defined over Them

Gregory M. Nielson

20.1 Introduction

This chapter is about triangulations and tetrahedrizations and fimctions defined over them.

The original and main goal was to provide some information about tetrahedra and tetra-

hedrizations and functions defined over them, but it was quickly realized that many of

these topics are easier to describe and understand with some background on their two-

dimensional analogs. Therefore, it was decided to also include material on triangulations.
While some of the material exists elsewhere in the literature, much is new and appears here

for the first time. The intended purpose for this chapter is to serve as a survey/tutorial in

the area of data modeling and visualization. As data modeling and visualization becomes
more sophisticated in its application domains and begins to deal with data sets that are more

complex than Cartesian grids, there will be the need for tools to deal with these data sets.

We feel that the tools and techniques covered here are very basic and will prove to be useful
in a variety of contexts in data visualization.

Now we have some comments about the organization of this chapter. While tetra-

hedrizations are the goal, researchers have dealt with triangulations for a much longer pe-
riod of time than tetrahedrizations and so triangulations and related matters are much better

understood. The next section is a survey of triangulations and related matters of interest in

modeling and visualization. The following section is on tetrahedrizations and we attempt

to follow the same flow of information as in the section on triangulations as well as pos-
sible. We use the phrase "as well as possible" because some aspects of triangulations do

not generalize to tetrahedrization and some facts known about triangulations and triangu-

419



420 ToolsforTriangulationsandTetrahedrizations

lar domains are yet to be known about tetrahedrizations and tetrahedral domains. On the

other hand, there are topics of interest to tetrahedrization which have no 2D counterpart of

interest--for example, visibility sorting for tetrahedrizations. The outline of this chapter is

very simple. In Section 20.2 we go through a list of topics on triangulations and triangular
domains and then in Section 20.3 we repeat these topics with reference to tetrahedrizations
and tetrahedral domains.

20.2 Triangulations

20.2.1 Basics

Definitions, Data Structures, and Formulas for Triangulations

In order to avoid any possible confusion and problems later, it is usually best to be a little
precise and formal about the definition of a triangulation. We start with a collection of

points in the plane, P = {Pi = (zi, Yi), i = i,... , N} and a domain of interest, D, which
contains all of the points of E We assume that the boundary of D is a simple (does not

intersect itself), closed polygon. Often D is the convex hull of P, but in general, it need

not be convex. In fact the boundary does not have to be a single polygon so that the
domain is not even simply connected. (Connected means that there is a path joining any two

points and simply connected means that the complement is connected.) Roughly speaking,
a triangulation is a decomposition of D into a collection of triangles which are formed from

vertices of R Since we are eventually interested in defining functions over D in a piecewise

manner over each triangle, we must require that the triangles do not overlap so as not to

have any ambiguities. Thus we require the collection of triangles of the triangulation to
be mutually exclusive and collectively exhaustive. In order to continue this formalism to

a precise definition, we need some additional notation. A single triangle with vertices pi,

pj, and pk is denoted by Tiik and the list of triples which represents the triangulation is
denoted by It. A triangle T,j_ is a closed 2D point set that includes its three edges which

comprise its boundary. The interior of Tijk, denoted by Int(Tijk) is open and does not

include the boundary. The edge joiningpi and pj is denoted by e_j and Ne = {ij : ijk in

It for some k} is used to refer to the collection of all edges. Formally, the definition of a
triangulation requires the following:

i) No triangle rijk, ijk E It is degenerate. That is, if ijk E It then Pi, Pj and Pk are
not collinear.

ii) The interior of any two triangles do not intersect. That is, ifijk E It and aft7 E It
then Int(Tijk)A Int(T<_,,) = 0.

iii) The boundary of two triangles can only intersect at a common edge.

iv) The union of all the triangles is the domain D = t,JijkeI,7]j_.

Examples of valid triangulations are shown in Figure 20. l and Figure 20.2. Note that

the example of Figure 20.1 is not convex and that of 20.2 is not simply connected. Even

though the diagrams of Figure 20.3 and Figure 20.4 look all right, the actual triangulations
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C

I
t

i j k
J I

3 5 2

5 1 2

4 5 3

6 1 5

4 6 5

6 7 1

8 6 4

"7 6 8

Figure 20.1: A triangulation ofa nonconvex domain.

given by the corresponding It's do not represent valid triangulations. In the case of Fig-

tire 20.3 the triangle Tdss is degenerate. Even if this triangle is eliminated, what remains

is not a valid triangulation because condition iii) would then be violated since edge e46

contains ps. This example would become a valid triangulation if the point p_ were to be

moved slightly to the right so as not to be on the edge e46. The information of Figure 20.4
is not a valid triangulation because condition ii) is violated.

We now want to make some assertions about the possibility of triangulating a domain

containing a collection of data points that is bounded by a simple, closed polygon. First we
note that in the case that the domain contains no interior data points, it is always possible

to form a triangulation. Just for the sake of interest, we mention two ways that this can be

accomplished. The first way is based upon the fact that every simple closed polygon with

more than three vertices can be split into two polygons. This leads to an algorithm that

recursively splits each subpolygon until only triangles are left. The following argument
which guarantees that each simple closed polygon has a diagonal has been discussed in

[ 16J. A diagonal is an edge between two vertices that lies inside the polygon and does not

intersect the polygon except at the endpoints.

Splitting a polygon: Let b be the vertex with minimum r-coordinate and ab and bc be

its two incident edges as is shown in Figure 20.5. If ac is not cut by the polygon, then ac is

a diagonal. Otherwise there must be at least one polygon vertex inside T_bc. Let d be the

vertex inside abe furthest from the line through a and c. Now edge bd cannot be cut byffl_e ....
polygon, since any edge intersecting bd must have one endpoint further from line ac. :The

second approach leads to an iterative algorithm. We first give a definition. A vertex, Pi, of

a simple, closed polygon is called protruding, provided the following conditions hold:
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9

I
t

i j k
I I

3 1 2

4 1 3

2 8 3

5 4 3

10 1 4

7 1 10

7 10 9

8 9 5

6 9 8

6 7 9

5 3 8

Figure 20.2: A triangulation of a domain which is not simply connected.

G

(

,)

I t

i j k
I I

1 4 2

2 4 6

2 6 3

4 6 5

4 7 5

5 7 8

5 8 6

Figure 20.3: Not a valid triangulation.
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I t

i i} i k

1 4 2

2 4 5

2 5 8

4 8 5

4 7 8

2 4 8

2 6 3

2 8 6

8 9 6

Figure 20.4: Not a valid triangulation.

b

a

/ /%%%

c

Figure 20.5: Any polygon with more than three vertices can be split.



424 Tools for Triangulations and Tetrahedrizations

Figure 20.6: Insertion of an interior point.

i) The interior angle @i, between the edges, pi-_pi and pi pi +1 is less than or equal to

rr. (Cyclic notation is used here so thatpx+l = Pl .)

ii) The triangle T/-1 ,,i+1 contains no other vertices of the polygon than pi-1, pi or

Pi+l.

iii) The interior of T,-_ 11i i+ l is contained in the interior of D.

It is an easy matter to prove that every simple, closed polygon has at least one protruding

vertex. (The proof is left to the reader. Some people call them ears and so there must be

two of them!) We can triangulate the polygon-bounded domain by successively removing

protruding vertices. This approach to triangulating the region bounded by a simple closed
polygon is called the "boundary stripping algorithm." It is easy to implement, but in a

theoretical sense, it is not competitive with other algorithms (see, for example, the papers
of Narkhede and Manocha [ 175] and Fournier and Monmno [94], among others).

Once the boundary of D has been triangulated, it is a relatively simple matter to build

a triangulation including the interior points. This can be done by simply inserting them
sequentially in a manner which we now describe.

Insertion of an interior point: If the point to be inserted, p, lies in the interior of the

triangle Tabc, we replace Tabc with the three triangles: Tat,p, Tbcp, Tcap. Ifp lies on an edge
shared by Tabc and Tbaa, then we replace the two triangles T_bc and Tbau with the four

triangles Tbcp, Tabp, Tpc_,, Tp,_a. These two cases are illustrated in Figure 20.6.
It is also possible to generalize the insertion idea to include an edge. Once we are armed

with this capability, we know that we can triangulate any polygon-bounded domain: simply

connected or multiply connected (that is, with holes).

Insertion of an interior edge: Assume that the one endpoint, p, lies in the triangle

Tabc and that the other endpoint, q, lies in the triangle Txyz. See Figure 20.7. Collect all

of the triangles from T,b_ to T_vz which are intersected by edge pq and form a region R
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Figure 20.7: Insertion of an interior edge.

with polygon boundary D. We can split D with polygon dpqw, where d is the vertex of Tabc

not on the edge common with the other triangles whose union is R, and w is the analogous
vertex of T,u_. Now we know that each of these two domains can be triangulated. The

union of these two triangulations, which each contain the edge pq, can replace the previous
triangulation of D.

In addition to It, which represents the triangulation, it is often worthwhile to generate

and maintain some auxiliary information about the neighbors of each triangle. This infor-

mation is useful for traversal algorithms and evaluation algorithms which have a search-
ing component that determines the particular triangle containing a point where a function

defined piecewise over the triangulation is to be evaluated. One very common and par-

ticularly useful data structure is that which is illustrated in Figure 20.8. The first three

columns contain the data of It, with the additional constraint that in reading from left to
right (cyclically), the vertices of each triangle are traversed in a clockwise order. The next

three columns contain the indices of the triangles which are neighbors to this triangle. The

character _ indicates that the triangle has an edge that is part of the boundary of D. The en-

tries of these three columns are also in a special order. The fourth colurrm contains the index
of the triangle which shares the common edge with vertex indices specified in the second

and third eohurms. Similar relationships hold for the fifth and sixth columns. The infor-
mation represented by this data structure is called a "triangular grid." The neighborhood

information contained in the last three columns does not contain any "new" information
over that of/t, but it is often the case (and this depends, of course, on the application) that

it is useful data which is worth generating a priori.

Another data structure for representing a triangulation which is useful for some ap-

plications is illustrated by the example shown in Figure 20.9, which represents the same
triangulation as that of Figure 20.8. Here, for each vertex, a list of all vertices which are

joined by an edge of the triangulation is given. This list is given in counterclockwise order
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Triangles

Pi

3 4 6

4 5 6

6 5 7

3 6 7

2 3 7

2 1 3

1 4 3

1 5 4

2 7 8

Neighbors

Nki Nij

2 4 7

3 1 8

4 2
3 5 1

4 9 6

7 5

1 6 8

2 7

Figure 20.8: An example that defines a triangular grid structure.

_ex Joining_ices
1 2,3,4,5

2 8,7,3,1
3 1,2,7,6,4

4 3,6,5,1

5 1,4,6,7
6 3,7,5,4

7 6,3,2,8,5

8 2,7

Figure 20.9: The data that defines the data point contiguity list.

around each vertex. This is called the datapoint contiguity list. We mention this particular

data structure because of its convenience for dealing with the optimal Delaunay triangula-
tion discussed in the next section. Also, it is very useful for computing the parameters of

the Minimum Norm Network method [ 179], which is one of the most effective C 1 interpo-
lation methods for scattered data.

Even though there are a number of possible triangulations for any given domain D, the

number of triangles is fixed once the boundary has been specified. More precisely, if Nb
represents the number of vertices on the boundary and Ni the number of interior vertices

so that N = Nb + Ni, then the following formulas hold:

N, = 2N, + Nb- 2

and

N_ = 3,%+ 2Nb - 3,

where Nt is the total number of triangles and Ne is the total number of edges. The impor-

tance &these formulas (not so much what the values in the formulas are, but more the fact
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that some fixed formula holds) will show up in the next section. If we let Mi represent the

number of points joining to p_ then it is easy to see that

N

E Mi -- 2N_

i=l

and so we have that the "average valence" of a point is given by

_ E'u=l _ 6 - 2 Sb + 3
N_+Nb N

which is approximately 6. For a sphere (or any domain homeomorphic to a sphere) we

have no boundary points and so N = Ni and the analogous formulas are

6
Xt=2(X-1), X_ =3(N-l), _I= _:(N-1).

Some Special Triangulations

One of the simplest triangulations results from splitting the rectangles of a Cartesian grid.

A Cartesian grid involves two monotonically increasing sequences, a:i, i = 1,... , n and

yj, j =- 1,... , m. The grid points have coordinates (xi, yj) and these points mark out a
cellular decomposition of the domain consisting of rectangles. See Figure 20.10. Forming

an edge with one of the diagonals of these rectangular cells leads to a triangulation of the

domain. In Figure 20.11 is shown a triangulation where a consistent choice for the diagonal

is made. In Figure 20.12 is shown a triangulation with mixed choices for the diagonals.

In some applications where dependent ordinate values are known, it is possible to base

the choice of the diagonal upon some criteria such as minimum jump in normal vector

(see Section 20.2.4) or whether or not the diagonal vertices are separated or connected

based upon the hyperbolic contours at the mean value (see the asymptotic decider criteria
discussed in [ 186]). In general for this type of triangulation which results from a Cartesian

grid, it is not necessary to maintain the triangular grid structure (see Figure 20.8) as this
information can be directly inferred from the natural labeling ofpij ---- (,_i, y3). Only the

information which indicates which diagonal is selected needs to be made available.

We now want to discuss some special triangulations which result from curvilinear grids.

A curvilinear grid is specified with two "geometry arrays" (xij, yij), i = 1,..., M;j =

1,... , N. A cell Cij consists of the quadrilateral with the boundary delineated by (xij, yij)

to (Xi+lj, Yi+U) to (xij+l, yij+t) back to (xij, yij). It is assumed that these four points
form a simple (nonintersecting) polygon so that the quadrilateral is actually well-defined.

This condition obviously puts some geometric constraints on the values of the geometry

arrays that specify a curvilinear grid.
An example of a curvilinear grid is shown in Figure 20.13. In this case the cell C73

degenerates to a triangle because (Xsa, Ys3) and (Xs4, Ys4) are the same point and the cell

(5'83 degenerates to an edge because, in addition, (X93, Y93) and (X94, Y94) are the same

point. The cells C33, C43, Csa, C63, and C73 have been removed from the domain creating
the hole in the interior.

The domain (the union of all of its cells) can be triangulated simply by triangulating

each of the cells, by choosing a diagonal to an edge of the triangulation. An example related
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Ym

Y j+!

Yj

Yj-I

Y2

Yt
I I

x 1 x 2

(xi ,Yj )

I I I I

xi_ 1 x i x i+l Xn

Figure 20.10: Cartesian Grid.

YJ+'l/
YJ 1 /__ Y_(xi,

YJ-I I / _.,.__..__

Y2 @ /__

Yi | I I I I I I
/ x 1 x2 Xi_l Xi Xi+l Xn

Figure 20.11: Triangulation from Cartesian grid with uniform diagonal choice.
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Ym -

Yj+l -

yj -

Yj-I -

Y2 -

Yl -

/___
\___
/j J\ (X i ,3_ )_

I I I I I I

X 1 ×2 Xi_l xi Xi+l Xn

Figure 20.12: Triangulation from Cartesian grid with mixed diagonals.

(

I I Y "(Xs1, Y51)

Figure 20.13: An example ofa curvilinear grid.
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(

(

(
(

(

Figure 20.14: Triangulation resulting from curvilinear grid.

to the grid of Figure 20.13 is shown in Figure 20.14. Here we have modified the grid by
moving the point (X72, ]'_2) a little. This serves to point out that if the cell is not convex,

then there may be only one choice for the diagonal.

We now discuss some special triangulations obtained by subdividing an existing trian-

gulation. We briefly mention a couple of possibilities. The first is based upon inserting an
additional point into the interior of an existing triangle and thereby forming three new tri-

angles. This is illustrated in Figure 20.15. This particular type of subdivision is sometimes

referred to as the Clough-Tocher split because of its association with a very well known
finite element shape function defined over a triangular domain.

Another way to subdivide an existing triangulation is to insert a new point on an existing
edge and split the two triangles (unless the edge is on the boundary) which share this edge.

If all edges are split simultaneously we obtain yet another triangulation where each previous
triangle is replaced by four new ones. Two different ways for forming triangles from these

points is shown in Figure 20.16 and Figure 20.17, respectively. These types of subdivision

are particularly interesting due to the nested properties of function spaces which are defined
in a piecewise manner over the embedded subdivisions. This can lead to wavelets and their

related multiresolution analysis. For the efficient application of these triangulations, it is

important to have a method of labeling the triangles which allows an efficient algorithm
for finding the labels of all neighbors of a triangle. The labeling scheme illustrated in

Figure 20.17 has these properties. We call it the divide andflip scheme and have found it

to be very useful for implementations. It is related to the spherical quadtrees discussed by
Fekete [85]. The first step of the subdivision applied to the triangulation of Figure 20.8 is

shown in Figure 20.18.



20.2 Triangulations 431

Figure 20.15: Subdivision by inserting a new point that is interior to an existing triangle.

",<)<X>(b(XX>
"KXX XY

Figure 20.16: Nested subdivision triangulation.
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Figure 20.17: The divide andflip labeling scheme for a nested subdivision triangulation.

/

Figure 20.18: A triangulation obtained by splitting each edge of an existing triangulation

and forming triangles as indicated in Figure 20.17.
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Figure 20.19: Examples of poorly shaped triangles.

20.2.2 Optimal Triangulations

Types and Characterizations

There are many possible triangulations of a given, polygon-bounded domain D. For some
applications (but not all) it is desirable to avoid poorly shaped triangles. See Figure 20.19.

These are triangles with very large angles or ones with very small angles. This gives rise to

two types of optimal triangulations which have been discussed quite widely: the MaxMin

and MinMax. Both of these optimal triangulations have a similar method of characteri-

zation. Associated with each triangulation there is a vector with Nt entries representing
either the largest or smallest angle of each triangle. The entries of each vector are ordered

and then a lexicographic ordering of the vectors is used to impose an ordering on the set of

all triangulations. In the case of the MinMax criterion, A, is the largest angle of a triangle

and the entries of each vector, At, are ordered so that

At = (A1, A2,... ,AN,),Ai > Aj,i < j.

The smallest of these vectors, based on their lexicographic ordering, associates with the

optimal triangulation. In the case of the MaxMin criteria, ai is the smallest angle and the

entries of each vector are ordered the other way so that

at = (al,a2,..., an,), ai _< aj,i < j.

The largest of these vectors represents the optimal triangulation in the MaxMin sense. In
Figure 20.20, six data points are shown which have a total of ten possible triangulations,

which are shown in Figure 20.21. The associated vectors for the MinMax criterion are

Aro = (2.84,2.36, 1.99, 1.77, 1.57)

Art = (2.98, 2.84, 1.99, 1.91, 1.57)
At2 = (2.98, 2.42, 1.91, 1.88, 1.57)

Ars = (2.84,2.36, 2.32, 1.99, 1.40)

Art = (2.42, 2.36, 1.88, 1.77, 1.57)

Ar5 ---- (2.98, 2.42, 1.95, 1.91, 1.27)

At, = (2.42,2.36,2.32, 1.88, 1.40)
Art = (2.42,2.36,2.32, 1.50, 1.50)

A_, = (2.42,2.36, 1.95, 1.74, 1.50)

A,_ = (2.42, 2.36, 1.95, 1.77, 1.27)
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which we rearrange into decreasing order to obtain

AT1 _--

_-_7- 3

AT o

Are ,

AT-

AT9

.4 7" 4

(2.98, 2.84, 1.99, 1.91, 1.57)

(2.98, 2.42, 1.95, 1.91, 1.27)
(2.98, 2.42, 1.91, 1.88, 1.57)

(2.84, 2.36, 2.32, 1.99, 1.40)

(2.84, 2.36, 1.99, 1.77, 1.57)

(2.42, 2.36, 2.32, 1.88, 1.40)

(2.42, 2.36, 2.32, 1.50, 150)

(2.42, 2.36, 1.95, 1.77, 1.27)
(2.42, 2.36, 1.95, 1.74, 1.50)

(2.42, 2.36, 1.88, 1.77, 1.57)

which implies the following ordering

and so r4 is the optimal triangulation in the MinMax sense. On the other hand, the associ-

ated vectors for MaxMin criteria sorted in increasing order are

a_, = (0.02, 0.04, 0.35, 0.46, 0.50)

a_ = (0.02,0.11,0.42,0.46,0.50)
a_ = (0.02,0.11,0.50,0.58,0.88)

aT"_ = (0.04,0.14,0.35,0.37,0.66)

aT"o = (0.04, 0.14, 0.35, 0.46,0.62)
aT"_ = (0.11,0.14,0.37,0.42,0.66)

aT"7 = (0.11,0.14,0.37,0.46,0.70)

a_, = (0.11,0.14,0.42,0.46,0.62)

a_ = (0.11,0.14,0..57,0.58,0.70)
a_ = (0.11,0.14,0.58,0.62,0.88)

which results in the following ordering

and so 7-9is the optimal triangulation in the case of the MaxMin criterion.

In the ease where D is the convex hull of the points of P, there is an important rela-
tionship between the MaxMin triangulation and the Dirichlet tessellation. The Dirichlet

tessellation is a partition of the plane into regions Ri, i = 1,... , N called Thiessen re-

gions. The Thiessen region Rk consists of all points in the plane whose closest point among
pi, i = 1,... , n is Pk. A Dirichlet tessellation is usually illustrated by drawing the bound-

aries of the Thiessen regions. The collection of these edges is sometimes referred to as the

Voronoi diagram (see [252]). An example is shown in the left image of Figure 20.24. In
the right image of Figure 20.24 is shown the MaxMin triangulation, which is also called

the Delaunay triangulation. It is dual to the Dirichlet tessellation in that the edges of this
optimal triangulation join vertices which share a common Thiessen region boundary. We

have included the great circles in the left image of this figure so as to point out another

important property of the Dirichlet tessellation and its companion Delaunay triangulation.
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Figure 20.20: Six data points.
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Figure 20.21: Ten triangulations of six data points.
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Pj(m) = Pj(ij(m)) ', /

Pk(m) :

Figure 20.22: Drawing the Dirichlet tessellation from the triangular grid structure.

By definition, the edges of the Thiessen regions meet at triads (possibly more than three

edges meet in some special, neutral/cyclic cases) which are equally distant to three points.

These three points will form a triangle of the optimal triangulation and the great circle will

not contain any other data points. See Figure 20.25.

We can be a little more formal about these properties if we introduce some notation.

Recall that It = {(i(m),j(rn),k(rn)),rn = 1,..., Nt} so that the three data points
Pi(m), Pj(m), Pk(m) will be the vertices of a triangle of the triangulation. We assume that

the neighbor information of the triangular grid is given by three arrays ij(rn), jk(m), and

ki(m), m = 1,... , Nt. Let V,, be the point which is equidistant from Pi(m), Pj(m), and
PMm) and Crn = {p :]IP- _'_11 <_ IIVm -- Pa(m)ll, a = i, j or k} be the circumcircle (disk)
for this triangle which has _ as its center. The Delaunay triangulation is characterized

by the fact that Cm does not contain any other data points pi. i = 1,..., N other than

Pi(m),Pj(rn), and PMm). The points Vm are the vertices of the Voronoi diagram. In order

to draw the Voronoi diagram we simply start with some !/_ and draw the edges to the three

points that are joined to it, namely, V/j(m), Vjk(rn), and Vki(m). If any one ofij(rn), jk(m),

or ki(m) is zero (say ij(rn), indicating the edge joiningpi(m) and pj(,_) is on the boundary
of the convex hull), then we draw the ray emanating from Vm in the direction perpendicular

to the appropriate edge (which is Pi(ra)Pj(rn) if ij(m) = O, Pj(,a)Pk(m) ifjk(rn) = 0, and

Pk(rn)Pi(m) ifki(rn) = 0). If we go through the list of triangles and draw three edges for
each Vm we will actually be drawing each edge (not each ray) twice. We can avoid this

duplication by testing (for example) whether or not m > ij(m), rn > jk(rn), m > ki(m)
before we draw the corresponding edge.
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Figure 20.23: Spherical triangulation and tessellation.

Because of this relationship between the Dirichlet tessellation and the optimal MaxMin

triangulation, we can extend the idea of MaxMin or Delaunay triangulation to any domain
where we can compute the distance between two points. The sphere provides an interesting

and useful example. Here the distance between two points p and q is easily computed as
cos -1 (p - q) so the Dirichlet tessellation is also easy to compute. An example is shown in

the right image of Figure 20.23. The leR image depicts the triangulation which is dual to
this tessellation.

There have been many other criteria for characterizing optimal triangulations that have

been studied and discussed in the literature. Some turn out to be equivalent to those we

have mentioned here and some only appear to be similar, so one needs to be rather careful.

Even though the terminology can be similar, the criterion of minimizing the maximum
angle is not the same as the MinMax criterion we have described here. It is easily the

case that the two quite different triangulations with different vectors Ar (as defined above)
could have the same maximum angle and could both be a triangulationwhich minimizes the

maximum angle. The example of Figure 20.20 has this property. Each of the triangulations

r6, vr, rg, _'a, and r4 have a maximum angle of 2.42, which tunas out to be a minimum,

so any one of these triangulations would satisfy the criterion of minimizing the maximum

angle, while only 7-4satisfies the MinMax criterion described here. Overall, the topic of
optimal triangulations can be rather technical, and one has to be careful when comparing
results found in the literature.
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Figure 20.24: The Dirichlet tessellation and its dual triangulation.

Algorithms for Delaunay Triangulations

In this section we discuss some ideas and techniques leading to algorithms for computing

the Delaunay triangulation of a set of points in the plane. In general, this is a very rich

and full area of research and here we can only provide a glimpse. The literature is very

abundant with both practical and theoretical papers on this subject. There is not a single

"best" algorithm. The choice depends upon the particular application and the tools and
resources available. It is a good strategy to be armed with a collection of ideas, tools,

and techniques so that an eff'ective algorithm can be custom-designed for the application at

hand. Our approach for the material for this section is based upon a discussion of the ideas

behind a few selected algorithms. Our selection is based upon potential usefulness of the

ideas and on which would be representative. In addition, we are particularly interested in

those ideas which extend most easily to three dimensions. But, just for the sake of interest,
we have included the description of one 2D algorithm which does not extend at all to 3D!

The Swapping Algorithm of Lawson [139]: The basic operation of this algorithm

consists of swapping the diagonal of a convex quadrilateral. Lawson [ 138] showed that any
triangulation of the convex hull can be obtained from any other triangulation by a sequence

of these operations. (Later this property was established for nonconvex domains by Dyn

and Goren [66].) Furthermore, Lawson proved that if the choice of the diagonal is made on

the basis of the MaxMin criterion for the quadrilateral only, eventually the global optimal

triangulation will be obtained. In other words, for this criterion, a local optimum is a global

optimum. A typical implementation of this type of algorithm would insert new points (say,

in sorted x-order) in the interior of an existing triangulation or connect to all points on the
boundary which are visible from the new point. This new triangulation is then optimized

by testing and possibly swapping the diagonals of convex quadrilaterals. It is interesting to
note that this type of algorithm will not necessarily produce the MinMax because for this

criterion, a local extreme is not necessarily a global optimum. The example of Figure 20.20
illustrates this. Based upon the MinMax criterion, r4 is optimal and _-s is a local minimum.

Locally optimal swaps of diagonals from 7-s would never lead to Ta. The algorithm could
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Figure 20.25: Notation and terminology for Delaunay triangulation and Dirichlet tessella-
tion.
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easily get trapped in a local extreme at rs. The ideas of simulated annealing can be used to

develop algorithms which can escape from these local extrema. See Schumaker [225], for
example.

The Algorithm of Green and Sibson [107]: This algorithm depends heavily upon a

particular data structure used to store the Delaunay triangulation (or Dirichlet tessellation).

For each object (a Dirichlet tile or window boundary constraint) is recorded in a "contiguity
list" consisting of all objects with which it is contiguous. This data structure is very similar
to the contiguity list structure we described in Figure 20.9 but it also includes some window

boundary constraints. New points are inserted sequentially. We quote directly from [107]
to how this is done.

The contiguity list for the new point is then built up in reverse (that is, clock-

wise) order and subsequently standardised. We begin by finding where the

perpendicular bisector of the line joining the new point to its nearest neigh-

bour meets the edge of the nearest neighbour's tile, clockwise round the new

point. Identifying the edge where this happens gives the next object contigu-

ous with the new point and this is in fact the first to go onto its contiguity list.
The new perpendicular bisector is then constructed and its incidence on the

edge of this new tile is examined to obtain the subsequent contiguous object:

successive objects are added to the contiguity list in this way until the list is

completed by the addition of the nearest neighbour. Whilst this being clone

old contiguity lists are being modified: the new point is inserted in each and

any contiguities strictly between the entry and exit points of the perpendicular

bisector are deleted, the anticlockwise-cyclic arrangement of the lists making
both this and the determination (sic) of the exit very easy.

This insertion algorithm requires the computation of the nearest existing data point to the

data point that is to be inserted. The authors discuss an algorithm which takes advantage of

the tessellation computed so far. In the authors' words: "Simply start at an arbitrary point

and "walk" from neighbour to neighbour, always approaching the new point, until the point
nearest to it is found."

The Algorithm of Bowyer [21]: Bowyer described an algorithm for inserting a new

point (lying in the convex hull) into an existing Delaunay triangulation. An example given

by Bowyer and which we include in Figure 20.27 serves to define this data structure. In
the terminology of Bowyer, the forming points for a vertex are simply the vertices of the

triangle which has this particular vertex as the center of its circumcircle. Since each triangle

gives rise to a vertex, giving a list of indices of the forming points for each vertex (as

Bowyer does) is equivalent to giving a list of indices of the data points which comprise

each triangle of triangulation. Except for a change in ordering, the neighboring vertices are

exactly the same as the indices of the triangle neighbors as given in the triangular grid data
structure of Figure 20.26.

In order to insert a new point (Q in Figure 20.27) within the current convex hull of the

data points, Bowyer [21] gives the following algorithm:
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Figure 20.26: An aid to the Green and Sibson algorithm.

1. Identify a vertex currently in the structure that will be deleted by the new point (say

V4). Such a vertex is any that is nearer to the newpoint than to its forming points.

2. Perform a tree search through the vertex structure starting at the deleted vertex look-

ing for others that will be deleted. In this case the list will be: { I,), V3, Vs}.

3. The points contiguous to Q are all the points forming the deleted vertices:

{ &, P4,P3, }.

4. An old contiguity between a pair of those points will be removed (P2 -/:'4 say) if all

of its vertices { V4, Va} are in the list of deleted vertices.

5. In this case the new point has five new vertices associated with it:

{W1, W._, W3, W4, Ws}. Compute their forming points and neighbouring vertices.

The forming points for each will be the point Q and two of the points contiguous to

Q. Each line in the tessellation has two points around it (the line I,'_- V_, for example,

is formed by Pa and/)4). The forming points of the new vertices and their neigh-
bouring vertices may be found by considering vertices pointed to by members of the

deleted vertex list that are not themselves deleted, and finding the rings of points

around them. Thus W5 points outwards to V_ from Q and is formed by {Pa,/)4, Q}.

6. The final step is to copy some of the new vertices, overwriting the entries of those

deleted to save space.

The Algorithm of Watson [254]: This algorithm relies on the property ofa Delaunay

triangulation that a triple of data point indices (i, j, k) will be in It provided the circum-

circle of pi, Pj, and p_, contains no other data points. As with the other algorithms, this
algorithm is based upon inserting a new point into an already existing Delaunay triangu-

lation. The general philosophy of Watson's approach is described by the following two

steps:



442 Tools for Triangulations and Tetrahedrizations

Vertex

I/i
v_
va

v5
v6
v7

PG
Pi

P9

P7
P6
P1

Forming points
2

P4

Pa

P3

P8

P3
P4
P4
P2

Neighboring vertices
1 2 3

_'5 0 ¢

v6 t2 ¢

P7

P2 •

W2 eP3

V

P5

V 2

P4

P1

V7 • P8

• P6

Figure 20.27: Illustrating the algorithm of Bowyer [21].
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1. Find all triangles whose circumcircle contains the point to be inserted.

2. For each of these triangles, form three new triangles from the point to be inserted

and the three edges of this triangle and test to see if any of these three new triangles

contain any other data points. If not, then add this new triangle to the triangulation.

More details for this general approach are given in the flow diagram of Figure 20.28,

which is based upon the flow diagram of [254].
Watson [254] describes a number of features and details to make the basic algorithm ef-

ficient and eventually discusses a particular implementation which he says has an expected

running time which is observed to increase not more than N 3/2.

The Embedding/Lifting Approach: Algorithms of this type are based upon a very

interesting relationship that exists between the three-dimensional convex hull of the lifted

points (xi, yi, z_ + y_) and the Delaunay triangulation. Faces on the convex hull are des-

ignated as being either in the upper or lower part. The lower part consists of faces which

are supported by a plane that separates the point set from (0, 0, -oo). The Delaunay tri-

angulation is obtained directly from the projection onto the xy-plane of the lower part of
the convex hull. See [27] and [68]. An algorithm for computing the convex hull which
is based on an initial sort followed by a recursive divide-and-conquer approach has been

described by Preparata and Hong [202]. This algorithm is also covered in [68] and [203].

Theoretically the algorithm is optimal time O(n - log(n)), but Day [49] reports that empir-

ical data implies a worst-case complexity of O(N'_). Day covers many of the details and

special-case issues of practical interest for implementation which are often brushed over in

more theoretical papers.

Divide-and-Conquer Algorithms: The general structure of this type of algorithm is
to divide the data set into subsets A and B, solve the problem for A and solve the problem

for B and merge the results into a solution for A U B. See Figure 20.29. Divide-and-conquer

algorithms can lead to theoretically optimal algorithms, but often fail to be competitive in

practical usage. The merging portion is often the most troublesome in trying to maintain
bounds on the running times and complexity of the algorithm.

20.2.3 Visibility Sorting of Triangulations

This is an example of an area that is interesting in 3D but not in 2D. It is possible to make a
definition of a visibility sort for a triangulation which is completely analogous to that of a

tetrahedrization, but there does not appear to be any application or use for such a property.

We defer further discussion on visibility sorting to Section 20.3.3.

20.2.4 Data-Dependent Triangulations

The topic of data-dependent triangulations arises within the context of determining a mod-

eling function F(z, y) for the data (Fi; zi, yi), i = 1,... , N. A relatively simple approach

to defining a modeling function is to first form a triangulation of the convex hull of the

independent data (zi, yl), i = 1,... , N and then define F to be piecewise linear over this
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Figure 20.28: Flow diagram for Watson's algorithm.
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Figure 20.29: Divide-and-conquer algorithms.

triangulation. This will yield a C O (continuous) function which interpolates the data; that

is, F(xi, yi) _- F,, i -- 1 .... , N. We denote this function by FT(x, y). Any triangula-

tion of the independent data (xi, yi), i = 1 .... , N wilt suffice for this approach. While

we are well aware of the many desirable properties of the Delaunay triangulation, it might

very well be the case that some other triangulation whose choice would depend upon the

values Fi, i = 1,..., N would lead to some desirable properties for the modeling function

F. This is the basic idea of data-dependent triangulation. Of course, there are potentially

many ways to accomplish this, but we choose for this discussion here to briefly describe

the criteria called "nearly C TM as proposed in [67]. An ordering is imposed on the collec-
tion of all possible triangulations of the convex hull in the following manner. First a local

cost function (see Figure 20.30) for each edge ei = 1 .... , Nie -_ Ne - Nb is defined and

denoted by S(FT, el). (We will shortly describe the four examples of local cost functions

covered in [67].) IfT and T' are two triangulations, then

T< T'

provided the vector

(s(Fr, el), s(rT, e2),..., _(FT, eN,,))

is lexicographically less than or equal to

(s( Fr,, el), s( Fr,, _2), . . . , _(Pr,, _¢.,) ).

It is assumed that the components of these vectors are arranged in nonincreasing order. The
goal is then to find the optimal data-dependent triangulation which is defined by having

the smallest associated vector under this lexicographical ordering. Since there are only a

finite (albeit possibly very large) number of possible triangulations, we know that a global
minimum exists even though it may not be unique and it may not be so easy to compute.

The algorithm used in [67] is similar to the swapping algorithm of Lawson (which we have

described above in Section 20.2.2) in that an initial triangulation is obtained and then an

internal edge of a convex quadrilateral is considered. If T' < T, where T' is the same

triangulation as T except the diagonal of the convex quadrilateral has been switched, then

this switch is made and other edges are considered for potential swapping. Since each swap

moves strictly lower in the lexicographic ordering, we are guaranteed that this algorithm
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Figure 20.30: Notation for local cost function definitions.

will eventually converge after a finite number of steps. This means that swapping any
edge would not move to a smaller triangulation. This limit triangulation may not be the

global minimum; it is only guaranteed to be a local minimum and steps to find the global

minimum must do more than swap diagonals which improve (with respect to the ordering)
the triangulation.

We now describe the four local edge cost functions used in [67]. Let P1 = a 1x +b 1y+ci
and P_ = a_x + b2y + c_. be the two planes defined over the two triangles of a convex
quadrilateral.

i) The angle between normals: The local cost function is taken as the acute angle be-
tween Ni and N2, which are the respective normals for P1 and P_.

s(Fr, _) = _os-_(A)

where

.4.
ala2 + bib2 + 1

v/(a_ + b_ + 1)(a_ + b__+ 1)

ii) The jump in normal derivative: This cost function is the difference between the

derivative of P1 and Pc. This derivative is taken in the direction perpendicular to

the edge dividing the two triangles.

s(&, _) = [,_.(al - a2) + ny(bt - b_)]

where (n_, nv) is a unit vector perpendicular to the edge e.

iii) The deviations from linear polynomials: The cost function measures the error be-

tween P1 and P2, evaluated at the other point of the quadrilateral.

_(FT, _) = v/(P_(_,, U,) - F_)2+ (P2(_k, U_)- &)2
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Figure 20.31: Examples of data-dependent triangulations.

iv) The distance from planes: This cost function measures the distance between the

planes/91 and P2 and the corresponding vertex of the quadrilateral.

/(P_(_, u_)- F_)2 (&(*k, Uk)- &)"

Some typical results are given in [67] which confirm the expectation that using the
optimal data-dependent triangulation improves the overall fitting properties of FT over that

of the Delaunay triangulation, which, by the way, is used as the initial triangulation for the

swapping algorithm. It is observed that long, thin triangles tend to appear where the data

seems to indicate a function that is increasing (or decreasing) relatively rapidly in a certain

direction. The use of the data-dependent triangulation generally gives an overall reduction

in errors when certain test functions are used to generate the data.

As we have mentioned, the local swapping algorithm used in [67] can only find a local

minimum. In order to move more closely to the globally optimal data-dependent triangula-
tion, Schumaker [225] and Quak and Schumaker [204,205,206] have involved the tools of

simulated annealing. More details on this are contained in Section 20.3.6 on data-dependent
tetrahedrizations. We include here the results of one example described by Schumaker. The
data consists of

(Fij;xi:yj); xi, yj -0.0,0.2,0.4,0.6,0.8,1.0;

where

F(x, u) = (y - x_)+.

Three triangulations are shown in Figure 20.31. The first is the Delaunay triangulation of

the independent data. The next is the triangulation which results from the local swapping

algorithm of [67] using the local cost function of"angle between normals?' The last is the

triangulation after simulated annealing has been applied. The associated vectors for each of
these triangulations is given in Figure 20.33 and the piecewise linear approximations over

these triangulations are shown in Figure 20.32.
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Figure 20.32: The graphs of Schumaker's example. See [225].
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Angles between normals for Delaunay triangulation:
55.077 48.155 44.684 39.801 39.588 38.378 37.734 35.445 33.992
33.786 33.561 33.162 30.470 28.898 28.287 27.284 27.284 26.003

23.633 21.958 20.814 17.886 16.066 15.942 15.642 11.310 10.302

9.661 7.294 7.294 7.294 6.843 0.649 0.649 0.459 0.458

0.458 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000

Angles between normals for locally optimal triangulation:
35.993 30.590 26.070 23.610 21.813 21.558 16.563 16.521 15.793

12.810 11.929 11.310 10.646 10.261 9.622 8.844 8.707 8.321

8.076 8.047 5.794 5.563 3.777 0.649 0.649 0.459 0.459
0.458 0.458 0.458 0.448 0.020 0.020 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000

Angles between normals for annealed triangulation:
26.070 22.929 22.113 20.049 17.257 16.563 16.521 13.031 12.505
11.929 10.389 10.270 10.261 8.954 8.321 7.844 5.962 5.794

5.256 1.652 1.480 1.025 0.649 0.648 0.459 0.458 0.458
0.448 0.447 0.020 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000

Figure 20.33: Angles for the data-dependent triangulation.
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Figure 20.34: Two different units used to measure the same data lead to two different

Delaunay triangulations.

20.2.5 Affine Invariant Triangulations

The desirable properties of the Delaunay triangulation have been previously discussed. Un-
fortunately, this optimal triangulation is not invariant under affine transformations, and this

means that methods for analyzing and visualizing data that use this particular triangulation
can be affected by the choice of units used to measure the data. This could be considered an

undesirable property. In this section we describe a relatively new method for characteriz-
ing and computing an optimal triangulation which is invariant under affine transformations.

Before we proceed with the discussion of these techniques, we wish to motivate further the
desirability of affine invariance.

As we have mentioned earlier, one of the main purposes for triangulations and tetra-
hedrizations is their use in defining functions in a piecewise manner over the domain of a

data set. It would be undesirable if the happenstance of the choice of units used to measure

the data were to affect the definition of a data modeling function. But this does happen
with the Delaunay triangulation. The example of Figure 20.34 points this out. This data

represents the independent data; the dependent data is not given as it is not important in

this context. The data is the same in both the left and right graphs of Figure 20.34; the only

difference is that in the left graph we have used years and 27 (pounds, British monetary
unit, approximately equal and assumed here to be exactly equal to two US dollars), and

in the right graph we have used months and dollars. If we use the units of years and 2?

then we can see that the three vertices (lyr, 1£), (0.5yr, 327), (2yr, 2£) will mark out a
triangle to be included in the list of triangles for the Delaunay triangulation. But on the

other hand, if we use months and $ we can see that the circumcircle defined by these same

three vertices (12mon, 25), (6mon, 65), (24mon, 45) contains the data point (4mon, 45).

Therefore, these three vertices will not comprise a triangle of the Delaunay triangulation if
these units are used. This simple example points out the possible effects of the choice of

the units of measurement. The choice of the units of measurement is the same as a change
in scale, x +-- ax and y _ by. Uniform scale changes of the type z" _ ax, y +- ay will

not affect the Delaunay triangulation.

We now discuss how to avoid this problem. It would be possible to simply normalize
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all data ranges to one unit by scaling by the range. But this approach would mean that
rotations of the data could have an effect on the Delaunay triangulation, meaning the final

data model would be affected by rotations of the data. In other words, the placement and

alignment of the axes for the measurement of the data would have an effect on the data

modeling function and subsequently on our analysis of the data, and this we would like to

have the opportunity to avoid. It would, in general, be useful to have a characterization
(and subsequent algorithms) for an optimal triangulation which is not affected by affine
transformation. An affine transformation is a map of the form

(_, y) = A(x, y) +

where A is a 2 × 2 matrix and c is a two-dimensional point. Affine transformations in-

clude not only scale changes and rotations, but also translations, reflections, and shearing

transformations. The approach to such an optimal triangulation covered here is through

the duality that exists between the conventional Delaunay triangulation and the Dirichlet
tessellation. As we described previously, the characterization of the Delaunay triangulation

(as a MaxMin triangulation), it was heavily dependent upon angles, and angles are affected

by scaling transformations; so it should be no surprise that the Delaunay triangulation is

also affected by scaling transformations. But the definition of the Dirichlet tessellation

uses only distance and we know that the Delaunday triangulation is dual to (a direct result

of) the Dirichlet tessellation. The approach here is to use a method of measuring distance
which is invariant under affine transformations. The Dirichlet tessellation based upon this

new method of measuring distance will have a dual which will serve as our optimal trian-

gulation. Rather than use the standard Euclidean norm [1(x, y)11"_= V/_ + y2 we propose

the use of the following norm

II(x,y)llv = (z,y) _ - (E_u) E_.E_ - (Exu) x (20.1)
-E_V E_ Y

r_-(=_) _= _-

where

N ' #_- N

•, ,q--,N ty_

N ' #Y- N

and

N

Exv = N

V= ( xl - p: x2 - p: ... x+v - p_: ) .Yt - ]-ty Y2 - #v "'" YN - #v
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We have used the subscript of V on the norm to explicitly indicate that this method of

measuring distance is dependent upon the data set. Change the data set and you change how

you measure distance, but the distance between any two data points will remain constant.
This norm and its use within the context of scattered data modeling was first described in
[ 181 ]. This norm has the property that it is invariant under affine transformations. More

precisely,

lip - QIIv = lIT(P) - Z(Q)llr(v) (20.2)

for any two points P = (x, y) and Q = (u, v) and any affme transformation

T(P)= ( al_a21 a2_.al'_) (x) +( Cl).y c_

Here, T(V) (used as a subscript in Equation (20.2)) is the transformed data

Yl -- /.ty Y2 -- ]2tl ff.V -- ].Z_/ "

Figure 20.35 illustrates the properties of this new method of measuring distance. Each

of the data sets shown in this figure are atTlne images of each other. Starting in the upper left
and moving in a clockwise direction, the transformations are: counterclockwise rotation of

44 degrees; a scaling in _: by a factor of 2; a scaling in y by a factor of 0.4. The four

ellipses in each figure represent points which are 1/4, 1/2, 3/4, and 1 unit(s) from their

center point as measured with the afflne invariant norm. In Figure 20.36 we show the
Dirichlet tessellation of these four affinely related data sets, and in Figure 20.37 we show

the corresponding dual triangulation. As one can see, the triangulation is unchanged by
these transformations.

As a comparison, we have also included the Delaunay triangulation based upon the
standard Euclidean norm in Figure 20.38. And as we indicated earlier, we can see that

triangulation results are affected by the transformations. Not all triangles are changed, but
some are.

And now we suggest some practical information on how to incorporate this feature into

an algorithm for computing triangulations. If you already have a procedure for computing
an optimal triangulation, then it is possible to modify it slightly to achieve the results we

have described in this section. Say, for example, that the procedure is based upon Law-

son's algorithm and that there is a subprocedure which decides whether or not to switch

the diagonal of a quadrilateral formed from two triangles. It might be that this procedure
is based solely on Euclidean distance. That is, the center and radius of the circumcircle of

three points are determined and the distance to the center from the fourth point is computed

so as to make this decision. In order to modify this subprocedure, we need only to replace
the use of the Euclidean norm with the affine invariant norm described here. The equations

for computing circumscribing circles (ellipses) for a quadratic norm in general are given
in [182]. If, on the other hand, the procedure you are already using is known to be rota-

tion invariant, then there is an even easier way to affect the results of the affine invariant
triangulation. This is based upon the factorization of the matrix which defines the affine

invariant norm. We denote this matrix by A(V) so that we have
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Figure 20.35: Affine transformations of a data set and points equally distant (affme invari-

ant norm) from a point.
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Figure 20.36: The Dirichlet tessellation (affine invariant norm) of affine transformations
of a given data set.
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f

Figure 20.37: The triangulation dual to the Dirichlet tessellation (affme invariant norm) of

a given data set and some affine transformations.
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Figure 20.38: The Delaunay triangulation of a data set and some affine transformations.
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The matrix A(V) can be factored (Cholesky) into

Here the notation L(V)" denotes the transpose of L(V).

Using this factorization, we have that

II(_,y)llv = (_,y)L(V)L(V)" ( _y) = II(_,y)L(V)if

which means measuring distances with the affine invariant norm is the same as measuring

distance in the standard Euclidean but with the points transformed by multiplying by L (V).

This means that we can achieve the result of the optimal affine invariant triangulation by

computing the standard Delaunay triangulation on the transformed data

(x_, v_) = (_,, y_)L(V)

In summary, we need only to compute

111 = _, 121- a21
_,/_7'

where all -- V_2_;22 _-_/ ._, a._l -- v,2_;-a2
-._y - (E._)- E_E_ - (E.y)2'and a2_o- __.,.y-'(E.y)'°and

to apply any rotation invariant triangulation algorithm to the transformed data

Xi = lt,xi + 12lyi

Y, = 122Yi, i = 1,... ,N.

20.2.6 Interpolation in Triangles

We now take up the topic of interpolating into (or over) a single triangular domain. The
interpolants we describe here form the basic building blocks for constructing the global in-

terpolants which have piecewise definitions over the individual triangles of a triangulation.

The domain here is a single triangle, T = Tijk with vertices Vi, Vj, and Vk, and the data
consists of values given on the boundary of the triangular domain. We need to differentiate

between two types of boundary data. If the data consists of fimction and certain derivative

values specified only at the vertices (or possibly other points such as midpoints), then we
call this discrete data. If, on the other hand, the data is provided on the entire boundary

of the triangle, we refer to this type of data as transfinite data. The importance of an in-

terpolant which will match transfinite data is that it serves as a prototype for developing

a large variety of discrete interpolants. This is accomplished through the process of dis-

cretization, where the data required for a transfinite interpolant is provided by means of
using some interpolation scheme only on the boundary, discrete data. For example, given

only data values at the vertices, we can use linear interpolation along an edge to produce
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the transfinite data required by the transfinite interpolant, or if we also have data values at

the midpoints, we could use quadratic interpolation.

There is a second concept which is rather important for interpolants defined over trian-

gles and this has to do with the degree of continuity of the global interpolant. Often, we

require that the global interpolant at least be continuous. We call such an interpolant a CO
interpolant. If the global interpolant has continuous first-order derivatives, we say it is a

C 1 interpolant. A CO interpolant for a single triangle is one which interpolates to boundary

data consisting of only position values, either at the vertices only (and possibly points along

the edges) or on the entire boundary. A C 1 interpolant for a single triangle is one which will
interpolate to first-order derivative data specified on the boundary. But this must be done in

a manner so as to guarantee C 1 continuity across the boundary edges. So, for example, if

the cross-boundary derivative varies quadratically along an edge, then the data on this edge

must be sufficient to uniquely determine this derivative, so that on an adjoining triangle we
will have exactly the same cross-boundary derivative. For this reason, it is common for C I

interpolants to have linearly varying cross-boundary derivatives which are determined by
their values at the two endpoint vertices.

Combining the two concepts of discrete and transfinite data and C o and C _ data leads

to four types of triangular interpolants. This general area of interpolation in triangles is
fairly rich and well developed, and we urge the really interested reader to follow the ci-

tations into the literature (for example [177], [178], and [189]) after taking a look at the
sampling we have chosen to include here. We first cover C °, discrete interpolants, then a

sampling of three C °, transfinite interpolants. This is followed by the description of a C 1,
discrete interpolant. We have chosen to include a discretized version of the minimum norm

triangular interpolant (see [ 178]). Another rather popular C _ , discrete interpolant, is the
Clough/Tocher interpolant often mentioned in conjunction with the finite element method.

Much has been written about this interpolant in the past and so we do not include it here.

This section is concluded with a description ofa C I, transfinite interpolant, called the side-
vertex interpolant [ 177]. It is one of the easiest to describe and the most versatile to use. It
also generalizes rather nicely to a tetrahedral domain.

C o, Discrete Interpolation in Triangles

The lowest-degree polynomial, C °, discrete interpolant, is linear and unique. Given the

data F (_), F ( Vj ), and F ( _";_), the coefficients of the linear function

F(x,y) = a + bx + cy

which interpolates this data can be found by solving the linear system of equations

a + bzi + cyi = F(Vi)

a+bxj+cyj = F(Vj)

a-4-bxk +cyi¢ = F(Vk).

Another path to this basic linear interpolant is via barycentric coordinates. Given a point

V = (z, Y), barycentric coordinates, bi, bj, and bk of this point relative to the triangle _jk
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are defined by the relationships

( x)y = biVi+bjVj+bkVk

1 = bi -t- bj + bk.

The linear interpolant now takes the form

F(x, y) : F(V) : biF(V_) + bjF(V_.) + bkF(V_ ).

There are several alternative ways of defining or determining the barycentric coordi-

nates of a point. For example,

bi Ai bj = Aj bk Ak
: -X : 75

where Ai, A j, and Ak represent the areas of the subtriangle shown in Figure 20.39 and A

is the area of Tijk. Also,

x- xk xj - xk x- xi xi - xk

bi = y- yk yj - yk bj --- i y- yi yi -Yl¢

xi-xk xj-xk [ xj-x_ xi-xkYi - Yk yj - Yk I Yj - Yi Yi - Yk

x-xj xi-xj
bk = Y - yj Yi - Yj .

t xk--Xj Xi--XjYk -- Yj Yi -- Yj

Given the values at the three vertices and the three midpoints of a triangle, there is a

unique quadratic which interpolates this data,

Q(z, y) : F(Vi)bi(bi - bj - bk) + F(Mjk)4bjbk

+F(Vj)bj(bj - bi - bk) + F(Mik)4bibk

+F(Vk)bk(bk -- bi - bj) + F(Mij)4bibj

where Mjk : (Vj + Vk)/2, Mik : (V_ + Vk)/2 and Mij : (V/ + Vj)/2.

A common way to specify a cubic along an edge is to use the Hermite form which

involves the first-order directional derivatives along the edges

FL(V;) = (xk- + (uk-

which are fiarther illustrated in Figure 20.40.
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V,

1 Aj

(x, y)

A k

Vk

Figure 20.39: Areas leading to barycentric coordinates

W.

1

F._.

jl

F_ ki (Vi)

(vk)

W.

J

Figure 20.40: The notation for the six directional derivatives.
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V bj Vj + b k V k

bk

vj

V.

Figure 20.41: The side-vertex interpolant notation.

The six directional derivatives at the three vertices along with F (Vi), F ( Vj ) and F (Vk )

do not uniquely determine a cubic since the bivariate cubics are of dimension 10. The

interpolant

C(_, y) = F(V,)b_ + F_.,(V_)bpbk+ F;,(V,)b_bj

+F(Vj)b_ + F_'j(Vj)b_b, + F_j(Vj)b_bk
i 2

+Y(_)b_ + F:k(Vk)b_b, + _j-k(Vk)bkbj

+wbibjbk

will match this function and derivative data for any value of w. This remaining degree of

freedom represented by w can be absorbed by a variety of conditions. For example, it can

additionally be required that the interpolant match some predescribed value at the centroid.
Another common choice is

w = 2[F(V,.) + F(I_) + F(Vk)]

1 , F'j(Vj) F[k(Vk)+F;k(Vk)]+_[F_i(Vi) + F;i(ld) + + F_j(Vj) +

which guarantees quadratic precision and is a result of discretization of a number of trans-
finite interpolants (see [189]). Quadratic precision means that whenever the data comes

from a bivariate quadratic function the interpolant will become this very same quadratic

polynomial.

C O, Transfinite Interpolation in Triangles

In this section, we give only a sampling of three interpolants which will interpolate to arbi-

trary function values on the boundary of a triangular domain, T = Tijk. More information

on this general topic can be found in [189].
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Vj

V

Figure 20.42: The evaluation points (stencil) for side-side interpolant.

The Side-Vertex Interpolant: The side-vertex interpolant is built from three basic

interpolants which are defined by linear interpolation along line segments joining a vertex
and the opposing side. See Figure 20.41. In terms ofbarycentric coordinates, we have

Ai[F] = biF(Vi) W (1-bi)F(Si),

Aj[F] = bj_(V_) + (1- bj)r(S_),

dk[F] = bkF(Yk) + (1 - bk)F(Sk)

where Si = bjVj+b_Ykbj.t.bk, Sj : b,V, 4-bkVkbi+bk, Sk z _b,+bj . Each of these interpolants will
interpolate to arbitrary function values on one edge of the triangular domain. In order to

obtain an interpolant which matches arbitrary values on the entire boundary of T/jk, we
form the Boolean sum of these three interpolants:

A[F] = Ai_Aj@Ak[F]=Ai[F]+Aj[F]+Ak[F]

- A, [dj [F]] - Aj [mk [F]] - Ak [Aj[F]] + Ai [Aj [dk [F]]]

= (1 - b,)F(S,) + (1 - bj)F(S_) + (1 - bk)F(Sk)

-b,F(_'i) - b_F(V_) - bkF(Yk)

The Side-Side Interpolant: The side-side interpolant (Figure 20.42) is based upon the

basic operation of linear interpolation along edges which are parallel to the edges of Tijk.
There are three of these interpolants:

bkF(biVi + (1 - bi)Vk + bjF(bi[_ + (1 - bi)_ _)P_[F] =
bk +b

bi + bk

6_f(bk Vi-+ (1 - 6k)_ + bjr(bk Vk + (1 - bk)Vj
b_+bj
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bk +bk
(bi+--_--)Vi + (bj --)Vj2

Figure 20.43: The stencil of the C* interpolant.

Unlike the basic interpolants of the side-vertex interpolant, these interpolants do not

commute and so their triple Boolean sum is not well defined. However, it is possible

to form the average of all double Boolean sums (each of which interpolates to the entire
boundary) to arrive at the following affme invariant interpolant

Q*[F] = bkF(bir/} + (1 - bi)Vk) + bjF(b, Vi + (1 - bi)Vj)
bk + bj

_,F(b_ + (1 - b_)_) + bkF(b_ + (1 - bj)Vk)
bi + bk

bi + bj

-biF(Vi) - bjF(Vj) - bkF(Vk).
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The C* Interpolant:

the stencil illustrated in Figure 20.43.

bibj
C'[F](b,,b 5,bk) =

bi bk

+ bj bk

2bzbj bk
(b_+ 2bk)(bk + 2hi) F(V,)

2bibjbk
(bi + 2bk)(bk + 2bi) F(k))

2bibjbl¢

(be + 2bj)(bj + 2b,) F(Vk)

which can be written in the form

The third and final transfinite, C O interpolant we describe utilizes

c'[,_](b_, bj, b_) biF(Vi) + bjF(k_) + bk F(P_)

+i'[_k {F(Qk) -- (bi + _) F(_i)- (bj + _2 ) F(_) }

+Wj {F(Qj)- (b, + _) F(V_)- (bk + _) F(Vk)}

+Wi {F(Q_) - (bJ + _2 ) F(k)) - (bk + _2) F(Vk) }

4bjbk 4bibk

(2b_+ b,)(2bk + b_)' Wj = (2b_+ bj)(2bk + bj)'
_,I_ =

4bibj

(2bi + bk)(2b: + bk)

In this form of C" we can see that it consists of linear interpolation plus a correction term.

It can easily be verified that C* is precise for all quadratic functions. That is, if f is a

quadratic, bivariate polynomial, then C* [f] = f.



20.2 Triangulations 465

C 1, Discrete Interpolation in Triangles

A commonly used 9-parameter, C I interpolant is

C_,[FI(x, y) : ]_ {F(V;) [b_(3- 2b,)+ 6_b,(b_,j + bj_,_]

+F_i(Vi) [b_bk + wbi(3b_cq i + bj - bk)]

+ _,(v,)[b_b + _b,(3b_,_ + b_ b_)]}

where

EL(V,) = (_k - _)F_(¼) + (uk - U_).%(V,),

and

W _.

bibj bk

bibj + bibk + bjbk '
I = {(i,j,k),(j,k,i),(k,i,j)},

II_kll2+ It_11_--Ill,ill _-
_ij = 2lle_J¢ll2

We use Heijll to denote the length of edge eij. This 9-parameter, C t interpolant is a

discretized version of a transfinite, C 1, triangular interpolant, which is described in [178].

The derivatives which are in a direction perpendicular to an edge vary linearly along an

edge. This guarantees that when two of these interpolants share a common edge the two

surface patches will join with continuous first-order derivatives. It is possible to discretize

the same transfinite interpolant and use an additional three parameters consisting of cross-

boundary derivatives at the midpoints of the three edges. This leads to an interpolant that

has all first-order derivatives varying quadratically along the edges. For a comparison of
the Ca interpolant to the Clough/Tocher interpolant within the context of triangle-based

scattered-data models, see Franke and Nielson [97].

C 1, Transfinite Interpolation in Triangles

In this section, we extend the problem of interpolating to transfinite data on the boundary

to include also the requirement that the interpolant match user-specified transfinite deriva-

tive data on the boundary. These types of interpolants can be used to construct surfaces
over triangulated domains which are C1----that is, functions which have continuous first-

order partial derivatives. One of the most versatile and easily described C 1, transfinite

interpolants is the C 1, side-vertex interpolant [ 177].
Earlier, we saw that the basic building blocks of the C °, side-vertex interpolant con-

sisted of linear interpolation along lines joining a vertex and its opposing side. In order
to extend these ideas to C _ data, we make use of the univariate cubic, Hermite interpo-

lation applied along rays emanating from a vertex and joining to the opposing edge. See
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Figure 20.44: The data for C 1 interpolants position and derivative boundary values.

Figure 20.41. Cubic Hermite interpolation will match position and derivatives at the two

ends of the interval. We assume that position and derivative information is available on the

entire boundary of a triangle T/jk.

Si[F](;) = b_(3- 2b,)F(V,.)+ b,2(b,- a)r'(K-)
+(1 - bi)_-(2bi + 1)F(N) + bi(1 - bi)2 F'(Si)

whereF'(V,.)= (_ - x_)r_(V,)+ (y - yi)Fy(_) and
I -- bi

F'(Si) = (x - xi)F_:(Si) + (y - yi)Fy(S/) Si[F] has the property that it interpolates to
1 - bi

the boundary data provided by F at Viiand on the entire opposing edge ek:. It also matches

first-order derivatives on this edge and at V,.. It does not necessarily interpolate F or its

derivatives on the other two edges. In order to have an interpolant for the entire boundary
of the triangular domain, we could try to construct one using the ideas of Boolean sums as

was done earlier for the C °, side-vertex interpolant. Even though the interpolants ,5'i, Sj,
and Sk commute so that their Boolean sums are well defined, this approach does not work

(see [ 177]) and so the use of convex combination techniques has been suggested. This leads
to the interpolant

b2h2_. 9 "_ ,
SIr] = b_blS,[F]+ , _[r] + b;b;s_[r]

bibj + + ? _-

which has the property that it matches F and its first order derivatives on the entire

boundary of the triangular domain. In the case where the boundary information has been

discretized with cubically varying (Hermite) position values and linearly varying cross-

boundary derivatives, it is possible to obtain a final interpolant with simpler weights in the
convex combination. Namely,

S[F] = bjbkSi[F] + bibkSj[F] + bjbiSk[F]
blbj + bjbk + bibk
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20.3 Tetrahedrizations

In this section we follow the outline of the previous section as well as possible. Since the

dimension is one less and since bivariate problems have been considered for a much longer
period of time, the development in the 3D domain is not as rich as it is in the 2D domain.

So we cannot parallel the previous section exactly, but most everything generalizes or leads
to something interesting and often useful.

20.3.1 Basics

Definitions, Data Structures, and Formulas for Tetrahedrizations

Our definition ofa tetrahedrization follows very closely to that given for a triangulation at

the beginning of Section 20.2.1. We start with a collection of points pi = (zi, Yi, z,), i =
1,... , N which we assume are not collectively coplanar. We denote this collection of

points by P. A tetrahedrization consists of a list of 4-tuples which we denote by/t. Each

4-tuple, ijkl E It denotes a single tetrahedron with the four vertices Pi, Pj, Pk, and pt. The
following conditions must hold:

i) No tetrahedron Tijkt, ijkl E It is degenerate. That is, if ijkl E It then pi, pj, pk,
and pt are not coplanar.

ii) The interiors of any two triangles do not intersect. That is, ifijkl E It and aj37_ E It

then Int(Tijkt)N Int(T_z._,_ ) = O.

iii) The boundary of two triangles can intersect only at a common triangular face.

iv) The union of all the triangles is the domain D = UijkleI, Yijkl.

We should point out that condition iii) must hold in the strictest sense, and so tetrahedra

joining as shown on the right side of Figure 20.45 are not allowed. The reason for this
condition (and all the others) is the same as the reason for the conditions of a triangulation;

that is, we eventually wish to be able to define C O functions in a piecewise manner over

the domain consisting of the union of all tetrahedra. The triangular grid data structure for
representing triangulations (illustrated in Figure 20.8) generalizes very nicely to a structure

for representing tetrahedrizations. For example, in Figure 20.46, we show a tetrahedrization

of the cube into five tetrahedra. We saw earlier in the case of triangulations that once the
boundary is specified, the number of triangles comprising the triangulation was fixed, and

moreover, we had a simple approach for determining a formula for the number of triangles

that existed in the triangulation. This property allowed for the definition of the vectors
of angles which lead to the criterion for optimal triangulations and was therefore rather

important. It would be nice if everything extended to 3D in a straightforward manner. That

is, we would like to say that any polyhedron can be decomposed into tetrahedra and that

there is a fixed formula of the following form Art = aNb + bNi + c, whereas before, Nb and

Ni are the number of vertices on the boundary and interior, respectively. Unfortunately, this
is not the case and, in fact, the situation is much worse than that. We saw earlier that any

polygon-bounded region can be triangulated using only the vertices of the polygon. This is

one of the first areas where matters differ significantly when going from 2D to 3D. It turns



468 Tools for Triangulations and Tetrahedrizations

i

/

Figure 20.45: The configuration indicated by the diagram on the left is acceptable, while

that on the right is not acceptable for a tetrahedrization. It is eliminated by condition iii)

listed above.

Y

(6_ X Tetrahedra
P i I PJ i Pk i Pl

_I_ 7 4 5 1

Z 7 1 3 2

2 4 0 1

7 2 6 4

2 4 7 1

Neighbors

Njkl iNikl i Nijl i Nijk

¢ 4, 5 0

, ¢ 5 ¢
¢ ¢ 5 ¢
4, 4, 5 4,
1 2 3 4

Figure 20.46: An example which defines the tetrahedral grid data structure.
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Figure 20.47: The twisted prism of Schoenhardt [221 ], which cannot be tetrahedrized.

out that not every polyhedron can be tetrahedrized. The example illustrated in Figure 20.47

is originally due to Schoenhardt [221]. It can be visualized as a prism which has been

twisted until each face (a quadrilateral comprised of two triangles) has "buckled" inward.

Any tetrahedron we form from these vertices must include an edge which lies outside the

domain of the "twisted prism," so it is clear that the object cannot be tetrahedrized.

One very basic operation does carry over in a straightforward manner from 2D to 3D--

the process of inserting an additional vertex into the interior of an existing tetrahedrization.

See Figure 20.48. If the new vertex p lies interior to an existing tetrahedron, say T_bcd, then

this tetrahedron is simply replaced with the four tetrahedron, Tabcp, Tabdp, Tbcdp, Taedp,

adding a net increase of three tetrahedra. If the new vertex p lies on the common triangular

face of two tetrahedra, then these two tetrahedra are replaced with six new tetrahedra,

T,_bcp, Tbcdp, T,_bdv, T,_,cp, T, cdp, T_,_dp, resulting in a net increase of four new tetrahedra.
This latter aspect of the number of tetrahedra increasing which is different here from the

2D case is that net increase in the number of tetrahedra depends on the actual location of

the interior point to be inserted. This observation points out that not only can the number
of ways that a data set is tetrahedrized vary, but also the number of tetrahedra can vary. We

will illustrate this further with some examples that do not even have interior points.

We have already seen (Figure 20.46) the decomposition of a cube into five tetrahe-
dra. It is also possible to tetrahedrize the cube into six tetrahedra. This is illustrated in

Figure 20.49.

It is interesting to note that from the exterior, the tetrahedrization of Figure 20.49 looks

exactly the same as that of Figure 20.46 because all external edges are the same. Another

interesting connection between these two tetrahedrizations of the cube is that one can be

obtained from the other by "swapping" operations, similar to those used in the Lawson
algorithm for computing optimal triangulations. Previously, in the case of triangulations,

there was the possibility of two triangulations of a convex quadrilateral. The analogous
situation in 3D is the tetrahedrization of the region formed by five vertices when two tetra-

hedra meet at a common triangular face. If the line segment joining the two vertices not on

the common face intersects the interior of the common face, then, analogous to the convex

quadrilateral case in 2D, there is the possibility of an alternate tetrahedrization. But what is
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Figure 20.48: Inserting a point interior to an existing tetrahedrization. On the left, the new
point is interior to a tetrahedron, and on the right it is on a common face of two tetrahedra.

z

Tetrahedra

Pi I PJ I Pk I Pl

4 7 6 2

4 5 7 2

4 1 5 2

5 1 7 2

I 3 7 2

4 I 2 0

Neighbors

Njkl iNikl i Nijl I Nijk

¢ , 2 ¢

4 I 3 (_

4 2 6 (_

5 2 3

do 4 do dp
¢ ¢ ¢ 3

Figure 20.49: A tetrahedrization of the cube into six tetrahedra.
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a d a d

a d c

c

1_, b

Figure 20.50: Two different tetrahedrizations of five points.

really different from the 2D case is that the number oftetrahedra changes from two to three!

This is illustrated in Figure 20.50. This basic operation was applied to the center and upper,

back-right tetrahedra of Figure 20.46 to arrive at the tetrahedrization of Figure 20.49.

Another example worth noting in this context is the case where pi = (i, i 2, i3), i =
1,... , N. The (Delaunay) tetrahedrization of the convex hull of this set of points con-

sists of the tetrahedra with vertices Pi,Pi+l, P5, and Pj+I, of which there are a total of

( (N - 2) (N - 1)) /2 tetrahedra. Bern and Eppstein [ 16] point out that this example pro-
vides an upper bound on the number of tetrahedra in a tetrahedrization of an N-vertex

polyhedron, and that a lower bound is provided by the fact that any tetrahedrization of a

simple polyhedron has at least N - 3 tetrahedra.

Some Special Tetrahedrizations

Following the pattem established in the earlier sections on triangulations, we first discuss

tetrahedrizations related to Cartesian grids followed by tetrahedrizations associated with

curvilinear grids. A 3D Cartesian grid (Figure 20.51) involves three monotonically in-

creasing sequences, xi, i = 1, ... , N_, y:, j = 1,... , N_, and zk, k = 1 .... , Nz. The

grid points have coordinates (zi, yj, zk) and these points mark out a cellular decomposition
of the domain consisting of regular parallelepipeds. Each of these cells can be tetrahedrized

in a manner similar to that given for the cube in the previous section. Probably the most

popular is the tetrahedrization involving five tetmhedra shown in Figure 20.46. So as to
not end up with a nontetrahedrization with problems similar to those shown on the right

side of Figure 20.45, it is necessary to "alternate" the tetrahedrization from one cell to the

next so that adjoining cells have the same diagonal on the common faces. This alternate

tetrahedrization is not really different but is just a rotation of its companion. It is shown in

Figure 20.52. Another popular choice is the tetrahedrization shown in the upper-left comer

of Figure 20.53. It has the advantage that all of the tetrahedra are the same shape (up to
mirror images). Actually, it turns out that there are six different tetmhedrizations of a cube

(parallelepiped). See Nielson [183]. We have previously shown pictures of two of them in

Figure 20.46 and Figure 20.49. The other four are shown in Figure 20.53.

All six tetrahedrizations of the cube are comprised of five primitive tetrahedra, which

are shown in Figure 20.54. We use the names OF, IF, 2Fr, 2F1 and 3F for these tetrahedra to
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(x i , Yj, z k )

Figure 20.51: Three-dimensional Cartesian grid.

Figure 20.52: The two alternating tetrahedrizations with five tetrahedra of the cell ofa 3D

Cartesian grid. (One can be rotated to the other.)

Figure 20.53: Four different tetrahedrizations of the cube, each with six tetrahedra.
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Figure 20.54: The five primitive tetrahedra comprising the tetrahedrizations of the cube.

indicate the number of exterior faces for each tetrahedra. There are two different primitive

tetrahedra with two exterior faces; one is a mirror-image version of the other and so it

cannot be rotated to the other. The tetrahedron OF has volume 1/3 and all the others have
volume 1/6. During informal discussion we most often use the names 3F = "comer," 2Fr

or 2FI = "right wedge" or "left wedge," 1F = "kite" and OF = "equi" or "fatboy"

In a joining similar to that shown in Figure 20.50, three 1F tetrahedra can come together

to form the same exact shape formed by a OF and a 3F together. Also a 2F1 and 2Fr together

form the same shape as a 1F and a 3F, but two 2Fr's or two 2Fl's cannot share a common

face and remain inside a unit cube. There are four tetrahedrizations (each composed of

three primitive tetrahedra) of the prism making up half of the cube. They are 3F, IF, 2F1;

3F, IF, 2Fr; 2Fr, 2F1, 2Fr; and 2F1, 2Fr, 2FI. In Figure 20.55 we show the dual graphs of the
six tetrahedrizations of the cube. A node is a primitive tetrahedron and an arc is a common

triangular face. As expected, in each case the "names" add to twelve.

Each of these six tetrahedrizations has unique and interesting properties. The tetra-

hedrization of Figure 20.46 and Figure 20.49 both "swap" diagonals on all three pairs of

opposing faces. The tetrahedrization shown in the lower right of Figure 20.53 swaps the

diagonals of two pair of opposing faces and that of the upper right swaps one pair. The

two tetrahedrizations on the left of Figure 20.53 do not swap any diagonals of any op-

posing faces. The tetrahedrization of the upper left of Figure 20.53 can be realized with
three cuts of the entire cube, while the others cannot. This particular tetrahedrization also

has the unique property of being composed of only 2F primitives whose faces are all right
triangles, and all six of them share the diagonal of the cube as a common edge. This tetra-

hedrization has been discussed and used widely. It is called the CFK triangulation of the

cube after Coxeter [47], Freudenthal [79], and Kuhn [137]. A replacement rule can be
used to generate this tetrahedrization. Using the labeling scheme of Figure 20.46, we start

with the four vertices P2,- 1, i = O, 1,2, 3 and replace each vertex _, other than Vo and
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Figure 20.55: The six tetrahedrizations of the cube shown as dual graphs. (These are the

only tetrahedrizations of the cube.)
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y

Figure 20.56: Face triangulations that are not consistent with any tetrahedrization of the
cube.

V7, with Vj+t + _-1 - Vj. Explicitly, this will successively generate the six tetrahedra:

PoPlP3P7; PoP2P3PT; PoPxP6P7; POB4P6P7; PoP4PsP7; POPlPsPT. The CFK triangula-

tion generalizes to n-dimensions as does the "replacement" algorithm for generating the

simplicial decomposition.

It is interesting to note that not all possible face triangulations are realized by the six

possible tetrahedrizations of the cube. In addition to the five different face triangulations

which are realizable (note that two tetrahedrizations have the same face triangulations)
there are three others which cannot be realized. They are shown in Figure 20.56. In or-

der to determine these eight unique face triangulations, we start with the 64 = 26 face

triangulations and then group them into these eight equivalence classes by rotations.

Theorem: It is impossible to tetrahedrize a cube and yield face triangulations as

shown in Figure 20.56.

Proof: We give only the proof for the case in the top center, as the others are similar.

We use the same labeling as shown in Figure 20.49. We start with the face 457. Only vertex
0 can be attached to the face 457, which gives the tetrahedron 0457. The internal face 047

must be shared by some other tetmhedron. Any vertex, however, cannot be joined to the

face of 457 without violating the conditions of the face triangulations, so this completes the

argument.

Earlier we discussed triangulations related to curvilinear grids. We now take up the
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(xijk'Yijk,Z

(x i+l,j+l,k+l ' y i+l,j+t,k+l ' z

ijk_

Figure 20.57: Single cell ofa 3D curvilinear grid.

i+l,j+l,k+l )

topic of tetrahedrization of 3D curvilinear grids. Analogous to the 2D situation, a 3D

curvilinear grid is specified by three geometry arrays xijk, yijk , Zijk , i = 1,... , N_ ; j =

1 ..... Nu; k = 1 ..... N_.. In the 2D case a cell C,j consisted of the quadrilat-

eral with vertices (zij, y,j), (zi+l,j, Yi+l,j), (xi,j+l, Yi,j+i), ( Xi+l ,j+I, Yi+l,j+l), and the
cells serve as a decomposition of the domain.

In the 3D case, matters are not as straightforward as we might expect, and there are

some areas where we need to be concerned. These have mainly to do with just exactly

what comprises a cell. In 3D the cell Cijk has the eight vertices (X_c, Yabc, Zabc), a =

i, i + 1, b = j, j + 1, c = k, k + 1, but there is not always a consistent definition for the

cell boundaries. We mention briefly some possible choices. If the geometry arrays are

constrained so that each collection of four vertices of the six "faces" of the cells are copla-

nar, then an obvious choice for the cell boundaries is this common planar quadrilateral. In
this case the cells are hexahedron, and it is relatively easy to determine whether or not an

arbitrary point (z, y, z) is in a particular cell or not. Often this planarity condition does
not hold, and cell boundaries are taken to be the parametrically defined (hyperbolic) sur-

face obtained by substituting 0 or 1 for any of the parameter values s, t, u in the following
trilinear mapping:

Ci,j.k(s,t,u) = (l - s)(1 - t)(l - u)Pi,j,k + (1 - s)(1 - t)uPi,j,k+l

4-(1 - s)t(1 - u)Pi,j+l,k 4- (1 - s)tuei,j+i,k+l

+s(1 - t)(1 - u)Pi+t,j,k + s(1 - l)uPi+Lj,k+t

+st(1 -- u)Pi+l,j+l,k + stuPi+l,j+l,k+l

where

Pi,j,k : (Xi,j,k, Yi,j,k, Zi,j,k)

Given a point (z, y, z) in the cell Cijk, the value (s, t, u) which associates with it via
the trilinear mapping is called the corresponding computational coordinate. In fact, in

order to determine whether or not an arbitrary point is in this type of cell or not requires

that we solve the three nonlinear equations which represent this association. This can

be a considerable problem from a computational point of view. Most methods use some

heuristics to obtain an initial approximation for some type of Newton's method. Another
choice for the cell boundaries, in the event the four vertices of a face are not coplanar,

is to choose them to be piecewise planar. That is, a diagonal edge is selected and the
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Figure 20.58: A curvilinear grid cell (polyhedron) that cannot be tetrahedrized.

boundary between the two ceils consists of the two triangles which result. Often the cell

would be further decomposed into tetrahedra, thus leading to an overall tetrahedrization of

the curvilinear grid. We should point out that not all choices for the diagonals can lead to
a tetrahedrization of the cell. In order to be specific about this, consider the cell illustrated

in Figure 20.58. This cell was created from a unit cube by cutting notches in the faces

so as to force the diagonal edges p_.pT,p4pl, paps, papo,pop6,p6P_ to be exterior to the
cell. If the depth of the notches is e, then this results in the points po = (0, e, 0), Pl =

(1 - e,0, e), P2 = (e, 1,e), P3 = (1,1- e,0), P4 = (e,0, 1- e), P5 = (1,e, 1), P6 =

(0,1 - e, 1), p7 = (1 -e,l,l-e). Note thatp6,p3, p4 andpl all lie in the plane

z + z - 1 = 0 and p2, p7, Po and P5 are in the plane z - z = 0.

Theorem: The polyhedron of Figure 20.58 cannot be tetrahedrized.

Proof: Consider the triangle face with vertices p6, p4, and p7. In any tetrahedrization,

this face must be joined to some vertex to form a tetrahedron. By considering the remaining
five vertices p_, po, p2, pl, and P3 we find that only p3 would not lead to a tetrahedron with

an edge which is outside the cell. If the tetrahedron p6, P4, pT, and Pa is included in the list

of tetrahedra, then the interior triangle face pap4p7 must connect to another vertex (besides

P6) to form a tetrahedron. But a consideration of each of the possible vertices ps, Pt, P_,

and Po each lead to an edge which is exterior to the cell and this concludes the argument.

We conclude this discussion on the tetrahedrization of the cells of a curvilinear grid

by pointing out that some hexahedm will decompose into seven tetrahedra. Consider the

cell of Figure 20.57 and let the six faces be planar, but assume that the four diagonal

points Pijk, Pi+l,j+l,k+l, Pi,j,k+l and Pi+l,j+l,k are not coplanar, so that they will form
a tetrahedron. Remove this tetrahedron, leaving two prisms with two planar quadrilateral
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Figure 20.59: Nested tetrahedral subdivision analogous to that of Figure 20.16.

Figure 20.60: Symmetric nested tetrahedral subdivision.

faces which can each be decomposed into three tetrahedra. We should point out that we

have observed cases where this decomposition was the Delaunay tetrahedrization.

In Section 20.2.1 we described two different approaches leading to nested subdivi-

sion triangulations and pointed out their potential value in multiresolution approximations.
These both have analogs in 3D and are shown in Figures 20.59 and 20.60, respectively.

The first one is based upon recursive subdivision and the second one is called "symmetric"

subdivision and is related to the CFK tetrahedrization of the cube [ 170]. It is composed of
six 2Fr's and two 2Fl's and is the same shape and twice the size of one 2Fr.

It should be noted that if primitive tetrahedra of the shape shown in Figure 20.61 are as-
sembled as in Figure 20.60, then we obtain a composite tetrahedron which is twice the size

and exactly the same shape as the primitive tetrahedron. This particular tetrahedrization of



20.3 Tetrahedrizations 479

(0, co, _/2)

(_, o_,0)

(c_, 0, _/2)

Figure 20.61: A tetrahedron that can be tetrahedrized into eight tetrahedra, each of which

are the same shape as the original yet half the size.

needle cap wedge sliver

Figure 20.62: Examples of poorly shaped tetrahedra.

tetrahedra is related to the Delaunay tetrahedrization of the BCC lattice, which is the union

of the lattices {(i, j, k) : i, j, and k are integers} and {(i + ½, j + ½, k + ½) : i, j, and k are
integers}. See also Senechal [229] for a discussion of tetrahedra that can be decomposed
into similar tetrahedra.

20.3.2 Algorithms for Delaunay Tetrahedrizations

Analogous to the examples of Figure 20.19, examples of poorly shaped tetrahedra are

shown in Figure 20.62. The sliver has small dihedral angles, but need not have any small

planar angles. Several measures of the quality of tetrahedrizations have been proposed. See

Baler [ 12] and Field [86]. Take as an example the ratio of the in.radius (radius of inscribed

sphere) and the circumradius. The problem here is that there is no apparent way to order
the collection of all tetmhedrizations of a point set. The approach of lexicographically or-

dering the associated vectors of angles, as we described in Section 20.2.2, does not extend

to 3D because the number of tetrahedra in a tetrahedrization is not necessarily fixed. Nev-

ertheless, the Delaunay tetrahedrization of the convex hull which is dual to the Dirichlet



480 Tools for Triangulations and Tetrahedrizations

Figure 20.63: Different cases of swapping for 3D version of Lawson's algorithm.

tessellation is well defined (in the absence of neutral cases where points lie on a common
sphere), so the remainder of this section is devoted to a discussion of the extension of the

previously discussed 2D algorithms for computing the Delaunay triangulations to the case
of 3D tetrahedrizations.

Extension of Lawson's Algorithm (Incremental Flipping): It is possible to ex-

tend this algorithm to 3D, but the extension is not as simple as one might expect. The first
major difference that one encounters is the character of the basic swapping step. In 2D we

take an edge and consider the quadrilateral formed by the two triangles which share this

edge. If the quadrilateral is convex, we can swap the diagonal if this step moves us closer to
the optimal solution, which can easily be determined by applying the circle inclusion test.

Two triangles are replaced by two other triangles. But the analogous steps in 3D can lead

to a situation where the two tetrahedra sharing a face can be replaced with three tetrahedra.
See Figure 20.63 for an example.

Joe [ 122] showed that if the points are inserted in a particular manner, then incremental

flipping will lead to the optimal Delaunay tetrahedrization. Edelsbmnner and Shah have

generalized these results [72]. See also [82]. Software based upon these ideas is provided

by the Software Development Group at the National Center for Supercomputing Applica-
tions and is available at the World Wide Web site:

http://www.ncsa.uiuc.edu/S DG/Brochure/Overview/ALVIS.overview.html.

Extensions of the Algorithm of Green and Sibson: There does not seem to be

an apparent method of extending this type of algorithm to 3D. The algorithm is dependent
upon the "contiguity list," and here lies the difficulty to extend to 3D. We included this

algorithm in our selection of 2D algorithms so that this very point could be made. Some
concepts extend easily to 3D and others do not.

Bowyer's Algorithm for 3D: It is a straightforward exercise to extend Bowyer's 2D

algorithm to 3D. In fact, the original paper of Bowyer [21] describes the algorithm for
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arbitrary dimensions. Bowyer also mentions that with some care, the algorithm can be
extended to other domains. In [164] there is a brief discussion of Bowyer's algorithm
along with some code.

Watson's Algorithm for 3D: The original description of Watson's algorithm applies
to arbitrary dimension. In Watson's paper [254] results for 2, 3, and 4 dimensions are

reported. Information on implementing this algorithm in 3D is given by Field in [86] and

[87]. It is also the basis for the 3D algorithms discussed in [29].

Embedding/Lifting Algorithms for 3D: Software for computing general dimension

convex hulls and Delaunay tetrahedrizations, based on the relationship mentioned earlier

in Section 20.2.2, are provided by the Geometry Center, University of Minnesota at the
WWW site:

http ://freeabel.geom.umn.edu/software/download/qhull.html.

20.3.3 Visibility Sorting of Tetrahedra

We first give a motivation for the definition of and the need for a visibility sort. We use

the example of volume rendering, which is a means of graphing (visualizing) a density

function (cloud) b'(z, y, z) defined over a 3D domain (which is often a cube). A viewpoint
V is selected along with a projection plane. A rectangular portion of the projection plane

is subdivided into a rectangular array of subrectangles which associate directly with the

pixels of an image to be generated. The value for each pixe[ is defined by

/o°F(i, j) = 3(s)C(s)e- ff _(u)du ds + Foe- ff _(u) au (20.3)

where the integral is taken along the ray emanating from the viewpoint and passing through

the center of the subrectangle associated with the pixel at location (i, j), Fo is the back-
ground intensity, and D is a distance along the ray sufficiently large so that the ray com-

pletely passes through the domain of interest. The function C, also defined over the same
domain as _i, is called the color function and govems the color of light emanating (by re-

flection, say) from a point within the density cloud. In actual application the integrals are

approximated by numerical schemes based upon sampled values of the integrand. The

sample values are often obtained by some simple interpolation into the cells covering the
domain. And these cells are often a result of the positions where _ has been measured. If

we let 0 = Xo < xl < z2 < • • • < z._l < z. = D be the distances from the viewpoint

to each sampled value along the ray, then the upper Riemann sum approximation to this
integral is

° /IFn = Z Azi_(xi)Ci tj, (20.4)
i=0 j=i+l

where Ci = C(_i), tj = e -a_(_) and Axi = xi - xi-1. This discrete approximation

can be computed by the compositingprocess

Fi = t_Fi_l + I_, (20.5)
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Figure 20.64: An example of three tetrahedra that cannot be visibility ordered.

where Ii = AxiO'( 2gi )C'i.

Another way to view this compositing process is as a simple model of transparency,

where an object of thickness Azi attenuates the incoming light intensity Fi- t by the factor
ti, and this object emits light of intensity Ii. Algorithms which accumulate these values

into a frame buffer (with each location holding the value for a pixel) can either be image-
space-oriented or object-space-oriented. Image-space algorithms proceed along the lines

of our development here and accumulate all contributions for a pixel along a particular ray.
Object-space algorithms compute exactly the same values but the calculations are done in

a different order. These algorithms sequentially process each cell by accumulating into the
proper location of the frame buffer all contributions of a particular cell. Due to the nature

of the compositing process, it is mandatory that these accumulations be done in the proper

order. It is this latter approach which motivates the definition of and need for visibility
sorting in this context.

Definition of Visibility Order: Let T and T' be tetrahedra of a tetrahedrization and

let V be the center of perspective projection. If there is a ray emanating from V which
intersects T' before T, then T is said to precede T' and we write T < T'.

The purpose of a visibility sort is to find a linear ordering of all of the tetrahedra of a

tetrahedrization so that the ordering relation is never violated.

Definition of Visibility Ordering: A visibility ordering of a tetrahedrization is a se-

quence, nl, n2,... , nT which has the property that whenever T,_, < Tn_ then i < j. The

implication of the definition of visibility ordering for splatting or object-space traversal

algorithms for volume rendering is that a tetrahedron T must be processed (sampled and
composited into the frame buffer) before T _ whenever T < T _.

A couple of items should be noted at this point. The relation of visibility order is not,

in the strict mathematical sense, a partial ordering. A partial ordering is required to be i)

transitive: z < y, Y < z implies x < z; ii) antisyrrunetric: :r < y and y < x implies
z = 9; and iii) reflexive: x < x. It is entirely possible that a visibility order could not exist
at all due to the presence of cycles as shown in Figure 20.64.

Knuth [136] has discussed in some detail (including MIX programs) the topological sort

algorithm as a means of "embedding a partial order in a linear order." A linear ordering
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DAG

Linear

Ordering

Figure 20.65: An example of the topological sort algorithm.

is a partial ordering where either z < y or y < x for all x, y. Even though this does not

strictly apply in the context of a general tetrahedrization, the basic ideas (mainly due to the

manner in which it is described) are very useful for developing visibility-sorting algorithms

for specific applications, so we include a description of the topological sort algorithm here.

Topological Sort Algorithm: The topological sort algorithm as described by Knuth

[136] starts with a directed, acyclic graph (DAG). The DAG can be represented with a
diagram using nodes and arrows. See Figure 20.65. The nodes represent the elements of

the set to be ordered, and an arrow from node x to node y represents the relation of the

partial ordering, x < y. The algorithm is simple. Any node that has no incoming arrow is

removed from the DAG (with all of its attached arrows) and placed in the linear ordering.

This process is repeated until the DAG is empty. It is easy to prove (left to the reader) that

if the DAG represents a partial ordering, a linear ordering will always be produced by this
algorithm.

Max [ 166] has discussed the application of the ideas of the topological sort algorithm

to the problem of producing a visibility sort for a cellular decomposition of a domain. Max
defines the order relation in the following way. The DAG contains an arrow for each face

common to two cells x and y. The arrow is directed from x to y if the viewpoint is on the

same side of the face as x, meaning that y must be processed before x. Max mentions that

the topological sorting algorithm will be successful "if every ray through the data volume

intersects it in a single sequence of adjacent ceils." Of course, if the cell complex contains

cycles (see Figure 20.64), then a visibility sort is not possible. Williams [257] discusses

similar algorithms applied to a very general cellular decomposition which may contain

empty cavities.

We conclude this section with some rather interesting properties about the special case

of the Delaunay tetrahedrization of the convex hull of a collection of 3D points. The power
of a tetrahedra is defined as D _ - R 2, where D is the distance to the viewpoint from the
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<_ D

Figure 20.66: Elements of the definition of the power of a tetrahedron.

center of the circumsphere of the tetrahedron and R is the radius of the circumscribing
sphere. See Figure 20.66. A visibility sort can be accomplished by a simple sort based

upon the power. This property is covered in [69] and used by Max, Hanrahan, and Crawfis

[ 167]. We caution the reader that this approach breaks down in the presence of neutral cases

where possibly several tetrahedra have the same power (as in the case of decomposing the

cube). One additional interesting observation in this context is that a sort based upon the

power of the tetrahedra does not require the neighborhood information that is required for
the algorithms using the ideas of topological sorting. Another method which does not use
adjacency information is described by Stein, Becket, and Max [240].

20.3.4 Data-Dependent Tetrahedrizations

Lee [ 148] has investigated the topic of data-dependent tetrahedrizations. This work gener-

alizes from 2D to 3D the ideas and techniques of [67] and [225]. Similar to the algorithms

of [225], simulated annealing is used. The initial tetrahedrization is the Delaunay tetra-

hedrization of the convex hull of the independent data site locations. Local swapping of
tetrahedra is performed based upon random values compared to an annealing schedule and

a cost function. This "randomness" of the simulated annealing approach allows the algo-

rithm to escape local extrema of the cost function. Local swapping for 2D simply involves
the choice of one or the other of the diagonals of a quadrilateral. In 3D the situation is more

complex. There are four cases shown in Figure 20.63 which are the same as those used in

the 3D version of Lawson's algorithm. In the first case, three triangles are swapped for two.

The second case is the reverse of the first--two tetrahedra are replaced by three. The third

case is where two triangles are on the boundary of the convex hull and the two tetrahedra

can be swapped for two other tetrahedra. In the last case four tetrahedra are swapped for
four other tetrahedra.

In Section 20.2.4, we described the cost function used by Dyn, Levin, and Rippa [67].
Analogous to these cost functions for 2D, Lee [148] uses the following criterion for 3D:

Gradient Difference: Let T1 and 7'2 be two tetrahedra with a common triangular face.
Let G1 be the gradient of the linear function which interpolates the data at the four vertices

of T1, and let G2 be the similar gradient for the linear interpolant of T2. The gradient
difference is defined as IIG_ - G2]I.
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RMS Error

.007475

Jump in Normal Derivative

Difference in Gradient .005445

.OO4361

Figure 20.67: Errors for the piecewise linear interpolant using different tetrahedrization.

Jump in Normal Direction Derivatives: Let L1 (x, y, z) : al x + blg + cl z + dl be the
linear function which interpolates to the data at the four vertices ofT1 and let L2 (x, y, z) =

a2x + b2g + c2z + d2 be the similar function for T2. Let N = (n=, n u, nz) be the normal

(normalized) of the common triangular face of Tt and T2. D1 = aln_ + blny + cln_
is the directional derivative of L1 in the direction of N. D2 = a,.n= + b2ny + c2n:

is the analogous value for To. The jump in normal direction criterion is ID1 - D21 =

I(al -- a2)nz + (bl - b2)nu + (Cl - c2)rtz)l.

Some example results reported by Lee [148] are repeated here in Figure 20.67. This

example involves a test function, F(x, y, z) = (tanh(gy- 9x - 9z) + 1)/9, which provides

the dependent data. The piecewise linear interpolant over the tetrahedrization is compared
to the test function. The RMS errors are based upon evaluations of the functions and this

approximation over a 20 x 20 × 20 Cartesian grid. The dependent data site locations are
taken to be 1000 random points in the unit cube.

In Figure 20.68 are some graphs which can be considered as 3D analogs of the graphs

shown in Figure 20.31 of Section 20.2.4. Similar to the 2D case, the data-dependent tetra-
hedrization involves some badly shaped tetrahedra. This is the cost of having an optimal

(or nearly optimal) piecewise linear approximation.

20.3.5 Affine Invariant Tetrahedrizations

In this section we extend the results of Section 20.2.5 on affine invariant triangulations

to that of affine invariant tetrahedrizations. Prior to discussing the characterization and

computation of this type of tetrahedrization, we make some comments about the need for
such a tetrahedrization over and above those reasons for the 2D case. It appears that as the

dimension of the independent data increases, our need to be concerned about lack of affine

invariance also increases.

One source of 3D independent data is the case of time-varying 2D data. In some cases
the data measurement locations might stay fixed over time and in some cases they may

vary over time. Let us say, for example, that we have a vector field which is known (by
means of a numerical simulation) at the locations of a 2D curvilinear grid (zlj, yij), i -_-

1,..., N_; j = 1,..., N u. As time proceeds, the vector field varies, but the dependent

data site locations stay fixed. So in this case, we have data which can be represented as

(Vijk;xij,Yij,tk), i = 1,... ,N=, j = 1,... ,N u, k = 1,... ,Nt. If the definitionof
a modeling function F(z, y, t), designed to interpolate the data, F(xij, yij, tk) = Fijk,
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Figure 20.68: Data-dependent tetrahedrization compared to the Delaunay tetrahedrization.
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is based upon a tetrahedrization of the 3D independent data (xij, yij, tk), then this model

will not necessarily be affine invariant, and the units used to measure and represent the

physical coordinates and time could have an effect on the modeling function F(x, y, t)
and subsequently an effect on the visualization and analysis. The same problem could

also occur for a time-varying vector field over a curvilinear grid which also varies over

time---that is, dataofthetype(Fijk;xijk, gijk,t_), i = 1 .... ,N_, j = 1,... ,Nu, k =

1,... , Nt. In general, any tetrahedrization of the independent data of (Fijk, xi, yj, zk),
where the choice of the units of measurement used for the independent data could lead

to a nonuniform scaling, could have the problem of being dependent on the choice of the

units used. If each of the variables use the same units there will be no problems of this

type, because a scale transformation of the form x +-- ax, y e-- ay, z e-- az, where the

scale change is uniform for each variable, will not affect the tetrahedrization. It is only the

nonuniform scaling x e-- ax, y e-- by, z +-- cz which creates the problem. An example

of a scale change affecting the tetrahedrization is shown in Figure 20.69. Here there are 10
data points. In the right image, the data has been scaled in the y variable by a factor of 2.

Not only does the tetrahedrization change, but even the number of tetrahedra changes. The

Delaunay tetrahedrization of the original 10 data points has 18 tetrahedra and the scaled
data has 13 tetrahedra.

We now describe the 3D version of the affine invariant norm, which leads (by way of

the Dirichlet tessellation) to an affine invariant tetrahedrization. Actually, we can define it

so that it is clear what the generalization is for any dimension. Let

If(x, y, z)lt_, = (=,y, =)(vv')-'

where V is the 3 x N matrix of translated data values

y ._

(')y
Z

xl -- ,ax x2 --/.z.v . • . XN -- Pz

\

Yl - #y y_ - #_ ... ytv - p_ ) •zl -- I-tz z2 --/..tz • . . ZN -- p.:

As with the 2D case, there are some different approaches to modifying an existing tetra-

hedrization procedure. Probably the simplest is to preprocess the data with the transforma-

tion given by the lower triangular matrix, L(V) which results from the Cholesky decom-

position of ( V V* ) -1

L(V)L(V)" = (VV*)-'

Explicitly in the 3D case, we use the transformed data

Xi -- lllXi q-121Yi -t-131zi

Yi = 122yi + la2zi

Zi = la3zi

where

/11 = av/-_, 121 all a13= l_--_-' 131= /-_(,
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Figure 20.69: Delaunay tetrahedrization of 10 data points and a scaled version of the same
data points.
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/32 - a33 --/21/31.
12__

A

where

and

(_,_) = (vv') -_ = z(v)z(v)*

det - (_uEz - 2zzEyz) r2r'. r'- -- \ yz _x -- _.vz _---'xy )
_oV,2 V,o

_ =

_ =

_zy -'=

_yz

NE_=l (zi - _.)_
N

N

N , #z--
N

, /zy--

EN=I xi

#2-- N

_=i Y_

N

)--_-_=1 z_

N

N

N

N

NEi=l(Xi --#.)(zi -- _z)
N

det = F,_E_ w_____ + 2E_vEv_E_ - E_(Evz) _ - _y(Ezz)_:_2Zz(E_y).2

We conclude this section with some examples illustrating this affine invariant norm and

its use in characterizing affme invariant tetrahedrizations. In Figure 20.70 there are four

graphs of 13 data points. The transparent ellipsoids represent all the points that are 0.50 and

1,0 units from the center point using the affine invariant norm. The different graphs show
the data after it has undergone an aft-me transformation. The original data is displayed in the

upper left. The upper right shows the data after it has been rotated by 44 degrees about the

z axis. The lower right is after it has subsequently been scaled in the x variable by a factor
of 1.5. The lower left is after it has been scaled in y by a factor of 0.6. A close examination

of these graphs will show that the relative distances (as measured by the affme invariant

norm) between points is unchanged by these transformations. Figure 20,71 shows an affine
invariant tetrahedrization. In comparison, the conventional Delaunay tetrahedrization is

shown in Figure 20.72.

20.3.6 Interpolation in Tetrahedra

As with the bivariate case covered in Section 20.2.6, there are two concepts of interest for

interpo[adon in tetrahedra. The first is concerned with the amount of boundary data that
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Figure 20.70: Examples illustrating the affine invariant norm. The ellipsoids are 0,50 and
1.0 units from the center point.
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Figure 20.71: Examples of aft-me invariant tetrahedrization.
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Figure 20.72: Delaunay tetrahedrization of the same data as in Figure 20.7t.
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is provided or assumed to be available. This can be discrete data provided at a finite num-
ber of locations (usually the vertices or midpoints) or transfinite data where boundary data
values are assumed to be available at all locations on the boundary. The second concept

relates to the degree of continuity of a piecewise defined interpolant using the local inter-

polants described here. C O interpolants use only boundary position data and lead to overall

interpolants which are continuous. C 1 interpolants utilize first-order derivative information
and lead to global interpolants which have all first-order derivative continuous. These two

concepts lead to four possibilities which we discuss below.

C °, Discrete Interpolation in Tetrahedra

Analogous to the bivariate linear interpolant which will match predescribed values at the

three vertices of a triangle, there is a unique trivariate linear interpolant which will match

data at the four vertices ofa tetrahedra, Tijkl. Given F(_), F(Vj), F(V_) and F(rvi), the

coefficients of this linear function which interpolates this data

F(z,y,z) = a + bz + cy + dz

can be found by solving the linear system of equations

a + bxi ff. cyi + dzi = F ( Yi )

a + bxj + cyj + dzj = F(Vj)

a-4-bxk +cyk +dzk = F(Vk)

a+bxl+cyt+dzt = F(Vt)

As before, it is also possible to use barycentric coordinates. The barycentric coordinates of

a point V = (x, y, z) are defined by the relationships

V = biVi+bjVj+bkVk+btVt

1 = bi + bj -]- bk + bt

and the linear interpolant has the form

F(x, y, z) = F(V) = biF(Vi) + bjF(Vj) + bkF(Vk) + b_F(Vt). (20.6)

As before, there are several ways of defining or computing barycentric coordinates. The

analog of the ratios of areas we saw before is the ratio of volumes of subtetrahedra,

Vot(_vkt ) Vol(_v_ ) Vol(_kv )
Vol(Tvp, t) bj -- bk -- bj --

b__ Vol(7],,)' Vol(_k_)' Vol(T_.i_._)' Yol(Tqk_)

where Tvjl, l is the tetrahedron with vertices V, V_, Vk, and Vz and similar definitions for
the other subtetrahedra. The volume ofa tetrahedron, Tabcd, with vertices a, b, c, and d is

1

Vol(Tabcd) = _ [(d - a)-((b - a) x (c - a))]
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Vk

Mj k

V.
1

Figure 20.73: Data site locations for trivariate quadratic interpolation.

Also determinants can be used,

X -- Xj X -- X k

y-Yj y-Yk
Z-- ~' Z--Z, k

bi = "3

X -- X l

9 - 9t
Z -- Z 1

X i -- Xj Xi -- Xk Xi -- Xl

Yi -- Yj Yi--Yk Yi -- Yl

Z i -- Zj Z_ -- Z k Zi -- Zl

b k

X--Z i X-- Zj Z-- Xl

Y-Yi Y-Yj Y-Yt

z -- zi z -- zj z-- zl

xk - xz xk - x d xk - xt

Yk -- Yi Yk -- Yj Yk -- Yt

Z k -- Z i Z k -- zj z k - zl

bj =

X -- £i X -- X k X -- Xl

Y--Yi Y-- Yk Y-- Yt

z- zi z-zk z-zt

Xj -- Xi xj -- .rk Xj -- :zl

Yj -- Yi Yj -- Yk Yj -- Yl

Zj -- Zi Zj -- --'k Zj -- Z t

b l

X -- 3: i £ -- xj x -- Xk

Y-- Yi g-- Yj Y-- Yk

z -- 2 z 2 -- 2 3 z -- Zk

xl --xi xl -- xj x l -- x k

Yl -- Yz Yl -- ffj 9l -- Yk

Zl -- Zi 2f -- Zj Z l -- Z k

Given the values at the four vertices and the six midpoints of a tetrahedron, there is a

unique trivariate quadratic which interpolates this data,

Q(x,y,z) = F(i._-)bi(bi-bj-bk-bt)+F(Vj)bj(bj-bi-G-b_)

+F(Vk )bk(bt; - bi - bj - bt) + F(I/i)bt(b_ - bi -- bj - bk)

+F(3'/ik)4bibk + F(]_ljt )4bjbt + F(M:: )4bibj (20.7)

+F(Mjk)4bjbk + F(Mit)4bibt + F(M_:t)4bkbt

where Mij = (Vi + Y))/2 and the other midpoints are defined similarly. See Figure 20.73.

C°, Transfinite Interpolation in Tetrahedra

As before in Section 20.2.6, we give a sampling of interpolants. One is a generalization of

the side-vertex interpolant and the other is a generalization of the C" interpolant. Both of
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(x, y, z) = V

g.

1

Figure 20.74: Notation for the face-vertex interpolant

these bivariate interpolants were discussed previously in Section 20.2.6.

The C °, Face-Vertex Interpolant: Analogous to the basic interpolants used to con-

struct the side-vertex interpolant, we have the interpolants which consist of linear interpo-

lation along edges joining a vertex and the opposing face

AiIF] = biF(Vi) + (1 - bi)F(Fi)

Aj[F] = biF(Vj) + (1- bj)F(Fj)

Ak[g] = bkF(Vk) + (1 - bk)F(Fk)

AI[F] = b¢F(Vt) + (1 - bl)F(Ft)

(20.8)

where Fi = bj Vj + bk Vk + bt Vt bi Vi + bk Vk + b_Vt Fi, = bi Vi + bj Vj + bt Vt
bj + bk + b_ , Fj = bi + bk + bl ' bi + bj + bi

and Fl = biVi + bjVj + bkVk. See Figure 20.74. Computing the Boolean sum of these
bi + bj + bk

four interpolants leads to

A[F] (1 - b,)F(F,) + (1 - bj)B(Fs) + (1 - b_)F(rk) + (1 - b_)F(F,)

-(bk + bt)F(Sk,) - (bi + ba)F(Si,) - (bj + b,)F(Sjt)

-(bj + bk)F(Sjk) - (bi + bk)F(Sik) - (bi + bj)F(Sij) (20.9)

+biV(Vi) + bjF(_) + bkF(Vj,) + btF(Vt)

bmVm+bnVn
where Stun - , mn= kl, il, jl, jk, ik, ij.

b,, + bn
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The C" Interpolant (for a tetrahedron): The analog of the bivariate C* interpolam
described in Section 20.2.6 is

C'[F] = b_F(_,'_)+ b:r(Vj) + bkF(V_) + btF(_) (20.10)

+W'{ F(Q')- (bi+ _) F(V,)- (bJ + _) F(V:)- (bk + _) F(Va)}

+i_ ( F(Q_,) - (bi + _-_) F(Vi) - (bj + b_._) F(Vj) - (bl + _) F(!/i) }

+WJ { F(QJ) - (bi + _) F(Vi)- (bk + _) F(i'_)- (bt + _3 ) F(l/_) }

+Wi (F(Qi) - (bJ + _) F(VJ)- (b_ + _3) F(V_)- (b_ + _3) F(I_) }

whereQz = (b, + _) !/i + (bj + _) Vj + (bk + _3) Vk,

Wl = 27bibjbk and the other Q's and VV's are defined in a similar
(3b, + b_)(3bj + bt)(3bk + bt)

manner.

C _, Transfinite Interpolation in Tetrahedra

The C z, Face-Vertex Interpolant: It is a straightforward process to extend the C 1,

transfinite side-vertex interpolant to a tetrahedral domain, Tijm. It is called the C 1, face-

vertex interpolant and we assume that position and derivative information is available at all

locations on the four faces which make up the boundary of the tetrahedron Tijkl. The basic
face-vertex operator is defined as

S,[FI(p) = b_(3 - 2b,)F(V_) + b2(b, - 1)F'(_;)

+(1 - bi)2(2bi + 1)F(Fi) + b_([ - bi)2F'(Fi) (20.11)

where f'(!/i) = (x - s._)F_(id) + (y - yi)Fu(Vi) + (z - zi)F: (_i) and
1 - bi

F'(Fi) = (x - xi)F_(Si) + (y- yi)Fu(Si) + (z - zi)F_(Si). The point Fi is the inter-
1 - bi

section point of the ray from I,} through V and the face opposite _,.'_.,and the derivatives are
taken in the direction of this same ray. See Figure 20.75. If we form the convex combina-
tion

o .) o o o 2 2 2 _ o o ,
S[F] = b[ib_bi2SiIF] + b:b_b'{@[F] + bjb l biSk[F ] + jb_.b?St[[]

b2/)2h2 b'.b2b 2 o o o b"b'b"
y_k_l "47 i k t + b]ib[b: + ] "_

then S[F] will match position and derivative values on the entire boundary of Tijkl.

C 1, Discrete Interpolation in Tetrahedra

For a C 1, discrete interpolant, we assume that position and first-order derivative information

is given at all four vertices of the tetrahedron Tijm. Since there are three (linearly indepen-
dent) directional derivatives at each vertex, this amounts to a total of 16 data values. The
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Vj

V.

Figure 20.75: The data for a 16 parameter, C 1 interpolant over a tetrahedron.

method for describing an interpolant that will match these 16 pieces of data---and which

also has the property that all first-order derivatives across a face with common data will

be continuous--is somewhat different from the previous interpolants we have described so
far. Our description (and subsequent implementation) is based upon a two-step procedural

discretization process. We use the transfinite interpolant of the previous section. In order

to apply this transfinite interpolant, we need to define position and derivative values on the

entire boundary of T/jej. First we assume that information is known on all the edges of the
tetrahedra, and we describe how to extend it to the entire boundary. Second, we describe

how to provide this transfinite edge data from only the discrete data at the vertices. If we
know both position and derivative information on the edges, then we can use any C 1 trans-

finite planar triangular interpolant to define position values on the interior points of the face

triangles. For example, the side-vertex method itself could be used. Specifying position
information on a face also implies some information about the derivatives on the interior

of a triangle. Namely, all directional derivatives in a direction parallel to the face triangle
are determined; so, in order to completely specify all derivatives, we need only provide a

definition for the derivative perpendicular to the face. For this we use the C O version of

the side-vertex interpolant which interpolates position data only and not derivatives, but we

apply it to the edge data consisting of derivatives normal to a face. We now describe the

second step of the discretization, which is how to compute edge information when only the

point and derivative values are known at the four vertices. For position only on an edge, we
simply use univariate cubic Hermite interpolation. This will also specify one directional

derivative on the edge--namely oFo-"C;,,,which will vary as a quadratic polynomial. In order

to get a C 1 join from one tetrahedron to the next, the other two directional derivatives must

vary linearly along this edge. This is accomplished by specifying the gradient, VF, by the

relationship

(i- t)vF;+ tVF 

[
OF t_YFi, eij)] eij+ [-;---(p)((l_eij- t)VFi +

(20.12)
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where VFi = (F_(pi), Fy(pi), Fz(pi)) and t = _. This interpolation of the gradient

or already specified because (VFij(p), eij)= OF and itis consistent with the value _
also has the property that for (n, eij)= O,

(V Fij(p), n) = (1 - t)(V Fi, n) + t(V Fj, n),

and so we have linear interpolation for any derivative in a direction perpendicular to

eij. This completes the definition of the 16-parameter, C 1, tetrahedral interpolant which

is based upon the face-vertex interpolant. Examples and more discussion on this inter-

polant can be found in [ 187]. The Clough-Tocher interpolant has been generalized to n-

dimensional by Worsey and Farin [261]. Other C 1, discrete interpolants for a tetrahedral

domain are discussed in [2], [3], and [260], but each have some problem or drawback. The

method of [2] is based upon the side-side, transfinite method of interpolation and appar-
ently it has a problem with the linear independence of the discretized data. The method of

[3] requires C _ data for a C 1 interpolant and the method of [260] has a problem similar to

its bivariate precursor [199] and [198]. This problem lies in the constraint that the center
of the circumcircle of each triangle must lie interior to the triangular domain.
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Abstract

The interval volume is a generalization of the isosurface commonly associated

with the marching cubes algorithm. Based upon samples at the locations of a 3D

rectilinear grid, the mc algorithm produces a triangular approximation to the

surface defined by F(x,y,z)=c. The interval volume is defined by

ce < F(x, y, z) <_fl We describe an algorithm for computing a tetrahedrization

of a polyhedral approximation to the interval volume.





1. Introduction

In this paper we describe an algorithm for computing a tetrahedrization of an interval

volume. The interval volume is a generalization of the isosurface commonly associated

with the marching cubes algorithm (see [4]). It is assumed that a trivariate function

F(x, y, z) has been sampled at domain points lying on a 3D rectilinear grid. Given a

threshold value, c, the mc algorithm produces a triangulated approximation to the surface

SF(C ) = {(x, y, z): F(x, y, z) = c}. The interval volume is defmed

as IF(a,fl) = {(x,y,z): a < F(x,y,z) </3}. We describe an algorithm for computing a

tetrahedrization of a polyhedral approximation to the interval volume. The uses and

benefits of the interval volume have been delineated rather well in earlier papers on this

subject (see Guo[3] and Fujishiro, Maeda and Sato [2]) and so we will not repeat them

here. The algorithm of Guo [3] is based on the alpha shapes of Edelsbrunner and Mucke

[1]. The algorithm of Fujishiro, Maeda and Sato [2] computes for each voxel the

intersecton of two convex polyhedra; namely @(-oo,13) and 1F(Ct,+oo ) which are

approximated by the polygon surface of the mc algorithm [4] appropriately adjusted forht

ambiguous cases (see Nielson and Hamann [6]). For the discussion here, the two surfaces

which bound the interval volume, SF(et ) and SF(fl) are referred to as the a-surface and

the ,/3-surface respectively.

r

,, 13-surface
\

"\

\

Figure 1. Tetrahedrization of the Interval Volume.

a-surface
_J

While it is impossible to anticipate all the application domains of algorithms for

computing interval volumes, in this paper, we are primarily interested in applications

where samples of the data function F(x, y, z)over a 3D rectilinear grid are known. This

includes the typical data sets associated with MR/and CAT scans. In order to make the

interval volume well defined, we make some inference about the variation of the data

function, F(x, y, z), over the voxel domains defined by the vertices of the rectilinear grid.

Our approach is very simple and leads to a two step algorithm:

2





Step1. Each voxel is decomposedinto tetrahedraand F is assumed to vary

lineary over each tetrahedron.

Step 2. For each tetrahedron of each voxel, the interval volume is computed and

decomposed into tetrahedra.

For the first step, there are several choices for decomposing a voxel into a collection of

tetraheda. Since we require that the final collection of tetrahedra to be a proper

tetrahedrization of the complete interval volume it is important that this first tetrahedral

decomposition step also be a tetrahedrization. This implies, among other things, that the

diagonals form the tetrahedization of one voxel to the next must match. We normally use

the decomposition shown in Figure 2 which leads to five tetrahedra per voxel. The five-

tetrahedron decomposition must be alternated from voxel to voxel with a rotated version

of itself in order to maintain a proper tetrahedrization.
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Figure 2. Steps of the Interval Volume Tetrahedrization Algorithm

2. An Algorithm for Tetrahedrizing the Interval Volume

The section is devoted to the details of the second step of our algorithm. At this point,
we assume that we have a tetrahedrization of the domain of interest and the values of the

data function, F, are known at the vertices of all the tetrahedra. We extend F to the

interior of each tetrahedron by assuming that it varies linearly. With this assumption, the

interval volume, IF(a , fl), is well defined and consists of a collection of polyhedron. Our

algorithm computes the interval volume tetrahedization for each tetrahedron separately

and so we need only describe the algorithm as it applies to a single tetrahedron with

consideration to how the individual pieces will match up properly. The four vertices of

each tetrahedron are classified according to the function value at this point. There are

three possibilities. If the function value is less than or equal to _z, then we call this a

"white vertex" and mark it in our illustrations with an open white circle. If the function
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valueis strictly betweena and/3, the we call this a "gray vertex" and mark it with a gray

filled circle. If the value is greater than or equal to/3, then we call it a "black vertex" and

mark it with a black filled circle. This classification leads to 15 distinct configurations

which are all shown in Figure 3. All other cases can be rotated into one of these 15

equivalence class representers. The labels we use for these configurations is based upon a

triple index indicating the number of white, gray and black vertices present. This naming

convention is shown in Figure 4.

130_ 03_O •

6O O • • •

 10, li ib01 ,
o 0 0 O o • • _ •

4o o /Am, ,,J_",,/ '\

°_o ° o_' °._" •
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Figure 3. The fifteen distinct configurations
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Methodof labelingtheconfigurations

Note that all the polyhedra representing interval volumes in Figure 3 have planar faces

and are convex. The planarity of the interior quadrilaterals lying on the or- or ]J-surfaces is

an immediate consequence of the use of linear interpolation to compute the vertices along

the edges.

We next describe how to decompose each of the interval volumes of Figure 3 into

tetrahedra. We first note that there are four distinct types ofpolyhedra, namely:

Tetrahedra: Configurations: 013,040, 310.

Prism shaped polyhedra: Configurations: 031,022, ,103, 130, 220, 301

Each of these polyhedra has six vertices, two opposing triangular faces and three

planar quadrilateral faces.

Crystal shaped polyhedra: Configurations: 112, 121, 211

Each of these polyhedra has eight vertices, two opposing triangular faces, two

planar quadrilateral faces and two planar pentagonal faces.

Cube shaped polyhedra: Configuration: 202

The polyhedra of this configuration has eight vertices and six planar quadrilateral
faces.

We now describe how each of these distinct types of polyhedra can be tetrahedrized so

as to lead to a global tetrahedrization of the interval volume. Since they are all convex

polyhedra, there is no problem as to whether or not they can be individually tetrahedrized.

(See Nielson [5].) The problem becomes interesting in trying to maintain a global

tetrahedrization. Unless special provisions are made, it is possible that the tetrahedrization

of a portion of the interval volume in one tetrahedra could not join with the

tetrahedrization of another portion of the interval volume in a separate tetraheda in manner

that would lead to an overall tetrahedrization of the interval volume. This could happen,

for example, if these two portions shared a common quadrilateral face and in one instance

one diagonal is chosen and in another instance the other diagonal is chosen. See Figure 5.

This eliminates the possibility of having a well-def'med piecewise linear function defined

over this type of decomposition. In order to circumvent this problem and have a consistent

choice of edges on any of the planar faces, we use the "index connection rule." The

invocation of this rule assumes that we have a total ordering on the vertices so that for any

two vertices one is "<" or "smaller" than the other. There are, of course, many ways to
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accomplishthis linear ordering of the vertices. The details of how we do it for the

examples presented here is given in the next section.

Figure 5. The "3D cracking problem" on the right.

t

Index Connection Rule:

Quadrilateral: The edge consisting of the unique smallest vertex joined to its

opposing vertex will be contained in the tetrahedrization.

Pentagon: Each pentagonal face has a unique vertex which is gray; that is,

the function value at this vertex is between a and ft. Also, it is

always the case on pentagonal faces that there are two adjoining

a-vertices and two adjoining fl-vertices. The gray vertex and its

non neighbor a-vertex will form an edge as well as the gray

vertex and its non neighbor fl-vertex. See Figure 7.

12, 25, 67, X,/_

12, 25, 67_

12, 24, 67, xy, _
12, 24, 67, xy,)_

Figure 6. Index connection rule applied to quadrilateral.
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Figure7. Indexconnectionrule appliedto pentagonalface

We now setout to prove how each of the different types of polyhedra (prism, crystal

and cube) can be tetrahedrized and in a manner which is consistent with the edges required

by the "index connection rule."

Prism shaped polyhedra: Configurations 031,022, 103, 130, 220, 301. On any prism

shaped polyhedron, there are eight different possible edge connections for the three

quadrilateral faces. Six of them can be "realized" by a tetrahedrization of the polyhedron

while two can not. See Figure 8. The edge connections shown in the upper left: and lower

right are the ones that can not be realized, but these particular vertex connections would

never be specified by the "index connection rule" or otherwise we would have by

transitivity a contradiction to the linear ordering of the vertices.
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0 0 0 1 0 0

_,_/_,_

Figure 8. The eight possible edge configurations for the quadrilateral faces of the prism

shaped polyhedron.

Crystal Shaped Polyhedra: Configurations: 121, 112, 211. For this type ofpolyhedra,

we can first decompose it into two pyramids and one tetrahedron and this decomposition

leads to edges on the boundary of the polyhedron which are consisitent with the edges

specified by the "index connection rule" applied to pentagonal faces. This is shown for

the three configurations, which lead to this case, in Figure 9. The "index connection rule"

is now applied to the remaining quadrilateral faces of the pyramids and these are split into

two tetrahedra each leading to a total of five tetrahedra decomposing a crystal shaped

polyhedron.
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Figure9. Decompositionof Crystalshapedpolyhedrainto atetrahedronandtwo
pyramids.

Cube Shaped Polyhedra: As with the other cases, we must show that the polyhedron

can be tetrahedrized such that the edges imposed by the "index connection rule" are

realized. Not all possible edge configuratons on the faces of this hexahedron can be

realized by a tetrahedrization. See Nielson [5] for examples that are not realizable. But

the edges imposed by the "index connection rule" are all fully realizable as we now will

show. First, let us identify the smallest vertex of this polyhedron and also the second

smallest. In the figures, the smallest is marked with a "1" and the next smallest is marked

with a "2". There are three cases to consider. The first is when these two special vertices

are located diagonally opposite from each other. Since everyone of the eight faces

contains exactly one of these two special vertices, the "index connection rule" applies and

the edges on all eight faces are completely specified. Fortunately, this particular

configuration of edges is fully realizable by a tetrahedrization of the cubed shaped

polyhedra. The tetrahedrization consistent with these edges on the faces is shown in

Figure 10.

Figure 10. The first type of case for the cube shaped polyhedron.

The next case is when the smallest vertex and the next smallest vertex are diagonally

located on the same face. All faces except the face opposite the one containing these two

special vertices has at least one of these special vertices and so the edges are determined

for these faces. This leaves ony two cases to consider. These two cases are illustrated in

Figure 11. In the first case, shown on the left, all opposing faces have diagonal edges

which are switched. This particular edge configuration can be realized with a
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tetrahedrizationconsistingof five tetrahedraasshown. Theothercaseshownon theright
is realizedwith thetetrahedrizationshownconsistingof six tetrahedra.

Figure 1l. Thesecondtypeof casefor thecubeshapedpolyhedron

The third caseis whenthe smallestvertex and the next smallestareon a common
edge. In this casetherearefour subcasesasthe"index connectionrule" leavesthe edges
on two adjoining faces undetermined. These four subcasesand the realizing
tetrahedrizationsare shown in Figure 12. In all subcases,we have a tetrahedrization
consistingof six tetrahedra.
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2

Figure 12. The third type of case for the cube shaped tetrahedron.

3. Implementation Considerations and Examples

Our implementation produces a tetrahedral grid rather than simply a list of the four

vertices of each tetrahedron. The efficiency and benefits of a tetrahedral grid over this

simpler data structure are evident for most applications. For compactness in the

following discussion, rather than the cumbersome "tetrahedral grid representing a

tetrahedrization", we often use the simpler "tetrahedrization." Our definition of a

tetrahedrization starts with the collection of vertices P/= (xi, Yi, zi), i = 1..... N which

we assume are not collectively coplanar. We denote this collection of points by P. A

tetrahedrization consists of a list of 4-tuples which we denote by 1t . Each 4-tuple,

ijkg _ 1t denotes a single tetrahedron with the four vertices Pi, Pj, Pk, Pc. The following

conditions must hold:

i) No tetrahedron Tijke, O'kg _I t is degenerate. That is, if ijkg _1 t then

Pi, PjPk and Pe are not coplanar.

ii) The interior of any two triangles do not intersect. That is if ijkg E I t and atfly8 _ I t

then Int( Tijke ) _ l.nt( Taflr6 ) = ¢.

iii) The boundary of two tetrahedra can only intersect at a common triangular face.

iv) The domain is the union of all tetraheda, D = [..JTijkg.

ijke _L

We should point out that condition iii) must hold in the strictest sense and so

tetrahedra joining as shown in right side of Figure 5 are not allowed. The reason for this
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condition (andall theothers)is thatwe eventuallywish to beableto defineCOfunctions
in apiecewiselinearmanneroverthedomainconsistingof theunionof all tetrahedra.

Thetetrahedralgrid datastructurefor representingtetrahedrizationsis illustratedby
theexampleof Figure 13whereatetrahedrizationof thecubeinto 5tetrahedrais shown.

Y

Z

X
Tetrahedra

Pi

7 4 5 1
7 1 3 2
2 4 0 1
7 2 6 4

2 4 7 1

Neighbors

Figure 13.An examplewhich definesthetetrahedralgrid datastructure.

As we notedearlier, the useof the "index connection rule" requires that we have a

linear ordering of the vertices. The ordering we use is based upon the lexicographic

ordering of a unique naming rule. The name of a vertex is specified by

vertex_name = i, j, k, XIYIZIXYIXZIYZIYXIZX]ZYIO, ot[13 (1)

This is further illustrated in Figure 14. As the algorithm processes each tetrahedron (five

per voxel) this naming scheme is used to record the tetrahedra of the interval volume for

each tetrahedron. This makes it easy to invoke the "index connection rule" locally. Later

we post process this tetrahedral grid into the more conventional format illustrated in

Figure 13 by sequentially replacing the name (pointer) as describe in equation (I) with a

simple integer pointer (or one-dimensional array index). It is also interesting to note that

this particular ordering eliminates the possibility of the first and second types of cases for

the cube shaped polyhedra and so only the third type of case (Figure 12) must be
considered.
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Z

i,j+l, k

Y

i,j, k X i+l, j, k
Figure14. Vertexnamingscheme.

Example 1.

This first example utilizes CAT data on a 64 x 64 x 68 grid. The lower value for the

interval volume is a = 50.0 and the upper value is fl=150. There are 362,181

tetrahedra and 115,956 vertices. In Figure 15 we show the interval volume. The c:-

surface is colored white and the/]-surface is colored red. We have cut a section of the

data away so as to show the interior of the volume. Triangular faces of the interval

volume which do not lie on either the a-surface or the//-surface are colored blue.

Figure 15. Display of interval volume for Example 1.

Example 2.

This next example is based upon some MRI data. The grid size is 64 x 64 x 58 and

we have chosen the cr and fl values in order to try and get a volume representation of the

"skin". These are taken to be 15.0 and 40.0 respectively. These values lead to 454,916

tetrahedra and 147,711 vertices. A rendering of the interval for this example is shown in

Figure 16. The left image is the interval volume and we see nothing more than the a-
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surfacewhich hasbeencoloredwhite. In the right imagewe showa cut-awaywith the
triangularfacesnot lying onaeitherthe a-surfaceor the fl-surface colored in blue.

Figure 16. Interval volume "skin" of MRI data

Example 3.

The next example is based upon the data function

F(x,y,z) = 12y+36(x-z) 2 -5

and the values:

a = -0.543, fl = 0.0,

Domain:{(x,y,z): 0_<x_<l, 0<y___l, 0<z_<l}

i j k

Sample Grid: {(13' 13' 13 )' i = 0 .... ,14; j = 0,...,14; k = 0 .... ,14}.

The final tetrahedrization has 4,034 tetrahedra and 1,480 vertices. A picture of the interval

volume is shown in Figure 17.
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Figure 17. Interval volume for Example 3.

Example 4.

This example utilizes the data function

F(x,y,z) = 4(3y - 1)2 + 18(x - z) 2 - 18(x + z - 1) 2 + 1

and the values:

a = -1.1 I, t3 = 1.11

Domain: {(x, y,z): O<x_<l, O<y<l, O_<z_<l}

Sample Grid: {(i3' ' ), i = 0 ..... 14; j = 0 .... ,14; k = 0,...,14}.

The interval volume consists of 5,782 tetrahedra and 2,092 vertices. A rendering of the

interval volume is shown in Figure 18.
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Figure 18.IntervalVolumeof Example 4.

Example 5.

This example is based upon the spherical data function

F(x, y, z) = (x - 0.5) 2 + (x - 0.5) 2 + (x - 0.5) 2

and the values:

a = 0.35, ,/3 = 0.37

Domain:{(x,y,z): 0<x<l, 0<y<l, 0<z<l}

i j k
Sample Grid: {(13' 13'13 )' i-- 0 .... ,14; j = 0,...,14; k = 0 .... ,14}.

The tetrahedrization has 8,500 tetrahedra and 3,224 vertices.

volume is shown in Figure 19.
A rendering of the interval
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Figure19.IntervalVolume of Example 5.

Example 6.

The data function for this example is

F(x, y, z) = cz(x - 0.5) 2 + a(y - 0.5) 2 + (O_ - 1)(z - 0.5) 2,

and the values of the other parameters are:

cz = -0.02, ,8 = 0.02

Domain: {(x, y, z): 0<x<l, 0<y_<l, 0<z<l}

i j k
Sample Grid: {(13' 13' 13 )' i = 0,...,14; j = 0,...,14; k = 0 ..... 14}.

7r2

16
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Figure20. IntervalVolumeof Example 6. Shaded and wire frame renderings

In this example, we have also included a wire frame renderings so that the

tetrahedrization is apparent.

It is interesting to note the t_equency of the various configurations. In Figure 21, we

show the statistics for the frequency of occurrence of these configurations for the six

examples we have discussed here.
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4. Remarks

. While our primary attention for application data sets has been rectilinear grids, for the

most part, our algorithm works for any tetrahedrization of a domain. This includes

tetrahedrized 3D curvilinear grids and scattered volumetric data sets.

. Some readers may wonder why we did not use the Delaunay tetrahedrization of the

convex polyhedra of Step 2 since a Delaunay tetrahedrization would lead to a two-

dimensional Delaunay choice on the common faces and therefore gaurantee a matching

across common faces. The problem here is to properly and efficiently deal with the

neutral and near neutral cases which are far from uncommon in the applications that

we have discussed here.
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Abstract

Some new piecewise constant wavelets defined over nested

triangulated domains are presented and applied to the problem of

multiresolution analysis of flow over a spherical domain. These new

nearly orthogonal wavelets have advantages over the weaker biorthogonal

wavelets. In the planar case of uniform areas, the wavelets presented here

converge to one of two fully orthogonal Haar wavelets which are proven to

be the only wavelets of this type.





1 Introduction

In this paper we present some new Haar (piecewise constant) wavelets defined over

nested triangular domains. Our target application is the multiresolution approximation

and analysis of fluid flow over a spherical domain and we will show the application of

these new wavelets in this context in Section 3. Even though our primary application is a

spherical domain and for simplicity, our figures will be for the case of planar triangles, it

should be kept in mind that the development and application is much more general. The

techniques developed here apply to any triangulated manifold or surface.

The concept of the orthogonality of the wavelet basis functions is important. This

relates to the ease of computation of best approximations. Fully orthogonal (or simply

orthogonal) wavelets are to be preferred over the weaker biorthogonal in this regard.

There do not exist orthogonal wavelets over spherical nested triangular domains (only

biorthogonal) and this paper does not change that. However, the new wavelets presented

here are "nearly orthogonal" in the sense that when the domain becomes planar (as

spherical grids approach) the wavelets become fully orthogonal. Exactly two, planar,

affine invariant, orthogonal wavelets result as limits of our nearly orthogonal wavelets

and we eventually prove that these are the only planar wavelets of this type.

Often these days, papers on wavelets and multiresolution approximation and analysis

will give some general basic motivation and overview. We will dispense with that here

and refer the reader to anyone of the many excellent introductions currently available.

See [1] for example. Rather, we will focus our introductory material on the case of Haar

wavelets over nested triangular grids. First, some comments about the types of domains

we are covering. We start with an initial triangulation of a domain of interest. This

initial or base triangulation may be very simple. In the case of a planar application it may

consist of a single triangle. /n the case of a sphere it may consist of the eight spherical

triangles with vertices on an octahedron or four spherical triangles with vertices on a

tetrahedron. Each of the triangles of the base triangulation is subdivided into four

subtriangles in a manner shown in Figure 1 by adding a vertex along each edge. Often

this vertex will be the midpoint (geodesic bisector), but this need not be the case. A

generic triangle of the base triangulation is denoted by T and we concentrate our attention

from this level forward. All subtriangles are denoted by Tn , where n is an N-tuple made

from the symbols o, i, j or k, The triangle labeling scheme that we use is illustrated in

Figure 1. This labeling scheme allows us to dispense with the normal data structure used

to represent a triangular as the name itself allows for the determination of all neighbors.

The parent of T,,o , T,,,, T,,j and T,,j, is T_. At level N there are 4 N subtriangles
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Figure 1. The Triangle Labeling Scheme for Subtriangles

We start with a function which is defined in a piecewise manner over a certain level

of the nested triangular domains and we wish to find an approximation defmed in a

piecewise manner over the coarser, parent grid one level up. We usually think of

applications starting with a rather fine resolution so that simple, piecewise constant

approximation is sufficient. We want to compute this lower resolution approximation in

an efficient manner and in a manner that allows the reconstruction of the original

piecewise defined function. This is accomplished through a change of basis which we

now illustrate by example. We can represent an arbitrary piecewise constant function

over the triangular subdivision at level 2 (upper right of Figure 1) by

F(p) = 2kk_bkk(p) + Akoq)ko(P) + Akiq_ki(P ) + itojqkok(p) + 2,ijqko-(p) + 2r.oqkio(P ) + 2,iiqkii(P )

+ 2,kiqkki(P) + Aoiqkoi(P)+ 2ooqkoo(P)+ 2,okqkoj(P)+ Aik(bik(P)
(1)

+, ji ji(p) + ; joOjo(p)+  k¢jk(P)

+ &jj_(p).

We have arranged the terms of F(p) so as to correspond with the layout of Figure 1.

The value 2Cab represents the value of F(p) over Tab. The first step of the so called

wavelet decomposition process yields





F(p) = Ykk_jj(P) + 2k_k(P) + Ykj_/kj (P) + roj_'oj(p) + rij_'_j(p) + _(_(p) + ri_ui_(p)

+ r_._'_.(p) + roWo_(p) + 2o¢_o(p) + rok_'ok(P) + rik_'ik(P)
(2)

+ Yji_'ji(P) + 2jCj(p) + 7jk_jk(P)

+ rjj_,jj(p)

where the coarser approximation is represented by the terms

2k_(P)+Aoqko(p)+Aiqki(P)and the so called detail or wavelet is represented by the

+ "_j_j(P)

remaining 12, _ basis functions. We should be quick to point out that F(p)has not

changed from equation(I)to equation (2),only a change of basishas taken place. StillF

has the property that F(p)= Aab for p • Tab. We can carry thisbasic idea one step

further and replace the coarser approximation, 2kqbk(P)+ Aoqbo(p) +2i¢i(p) , which is

+ Ajqkj(p)

piecewise defined over the parent triangles with an even yet coarser approximation which

is, in this second and last step, piecewise over the single triangle parent of T/, Tj, Tk, TO.

This leads to the representation

F(p) = Ykk_kk(P) + Ykgk(P)

+ Yki_tki(P)

+ Ykj_kj(P) + Yoi_oi(P) + YO'_'o'(P) + ri_ti(P) + riiTii(P)

+ roi_oi(P) + 2¢(p) + rok_Uok(P) + rikVik(P)

+ Yji_ji(P) + Yj_j(P) + Yjk_jk(P)

+ yjj_jj(P).

(3)

From equation (2) to equation (3) the 12 wavelet terms from equation (1) remain and 3
additional wavelet terms have been added along with the coarser (coarsest) approximation

A_(p). A general step in this decomposition is accomplished by successively processing

groups of four terms which are associated with a particular triangle. The terms

2nk¢nk(P) + Anoqkno(P) + 2niOni(P)

+ _nj¢.j(P)

are replaced by the terms

r,_k_'.k(P) + An(_n(P) + r,,_v/,,i(p)

+ r,,j_.,j(p)

using the relationship
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_k(e)J _g_ko g.k_ g.kj g.kkJL¢_k(P))

(4)

The above relationship (4) is called the refinement relationship within the context of

wavelets and embodies the information for a change of basis functions. See Figure 2.

replace with

I
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J

)_00.

+ Y nju/ nj

,.fJt_

r_
In k

In__° r_i

+ 7 nkg t nk

Iv

-A

Figure 2. Notation and an Illustrated Representation of Wavelet Decomposition

Actually in the computation of the coefficients of the wavelet decomposition leading

from (1) to (3) we need the inverse of the refinement relationship; namely,

qbnk(P)J _,hnk _,nki gnkj

(5)

because
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(4, r.i r.j r.k)=(&o &i &j I
gnji g njj

(6)

This inverse relationship is called the decomposition relationship. The representation of

equation (3) is called the wavelet decomposition and from this representation, we can

easily reconstruct any of the piecewise defmed approximations at any level and this can

be done either locally or globally. Also, from this decomposition, we can easily

reconstruct the original function locally by simply adding up the terms whose support

intersects the local region of interest. Other oracles can be invoked for different purposes

and applications. An oracle is a means by which a certain subset of the basis functions of

the wavelet decomposition are selected to form a certain beneficial approximation of the

original function. Compression of the original function is a very popular application.

Here a certain subset (say those with the largest coefficients) of the terms of the wavelet

decomposition are maintained. If the coefficients of the discarded terms are nonzero,

then there will be some loss as a result of the compression. With regard to this, the

concept of orthogonality is important. Let us explain why by noting a very basic property

of best approximations and orthogonal basis functions. Suppose that we wish to solve the

problem of

min F- N aigi{a 1 az,...,a N} Z
' i=I

where IIFII2 = (F,F). If the basis functions are orthonormal, i. e. (gi,gj)=

then the solution of (6) is easily computed as

1, i=jO, i.j

N

G=_"(F, gi)g i .

i=1

Furthermore this implies that whenever you have a representation of a function of the
form

K

F = _'. _zig i

i=1

where the basis functions are orthonormal, then _zimust be (F, gi) and if we wish to

compute a best approximation to F from among a subset of these basis functions, we need

only keep those of interest. That is, ifF is given by (7) then the solution of





F- _ aig i

ai, i _ K s i_K 11

is

G
= /, ctig i •

i_K

This only works if the basis functions are orthogonal.

Biorthogonal wavelets have the property that the collectively the _'sare orthogonal

to the _b's, but individually, the _' s are not orthogonal to each other and so by truncating

a wavelet representation, we don't necessarily get the best approximation. As long as we

do the approximation in "chunks" it is OK. That is, as long as we involve all the wavelet

basis functions from a particular level the best approximation property holds, but if we

use an oracle which does not keep this in mind, then we are not making the best use of the

storage for the coefficients. For example, an approximation based upon a certain

percentage of the largest coefficients of the biorthogonal wavelet decomposition will not

necessarily give the best compression in the least squares sense.

There is a second concept that is really quite important when it comes to the practical

application of these techniques. This has to do with how the actual data is mapped to the

names and variables used to describe and program these methods. For example suppose

that we start with a triangular array of trixel data FO., i, j = 1,...,2 N, i + j < 2 N and we

plan to apply the wavelets described here to obtain some compression or lower resolution

approximation. In order to apply these techniques, we need to make some association of

the data to the subtriangle domains illustrated in Figure 1. There are six possible ways of

making this association with each being an affine map of the other. But there is no

particular reason why one would be preferred over the other. We certainly do not want

the results of our wavelet decompositon and expansions to depend upon which choice is

made. Therefore, it is important that are methods give the same results in any case and be

invariant to these aft'me transformations or equivalently be invariant under the labelings

used. Some authors have called this property "symmetry."

2. Examples of Haar Wavelets over Triangular Domains

Within the context that we have established here, a particular type of Haar wavelet is

completely determined by the refinement equations of (4). We begin this section by

presenting two previously discussed Haar wavelets. The first is mentioned in [3] where it

is attributed to Mitrea and Girardi & Sweldens. The refinement equation for these
wavelets is





Cn(P) 1

_ni( P ) [ =

g/n/ P)l
g/nk ( P ))

1 1 1

- an _Zn 0
2a"-_o 2 a---hi

- an - _zn osn

2(ano + ani) 2(_Zno + _Zni) 2_nj

-- an -- CCn -- _n

0

an

2ank

1

o _¢no(p)1

¢._(p)|

qknk ( P )J

where a n represents the area of triangle Tn and ani , anj , ank , ano represent the areas of

the subtriangles Tni, Tnj, Tnk, Tno respectively. These Haar wavelets are orthogonal in

that g/ni, g/nj, g/nk are all orthogonal to _bn and also g/ni_L g/nj, g/ni L g/nk, g/nj -1-g/nk" Also

=f _-f =  n o.una,e r, wave  t arenota neinvariant
L v L

which means that the results of any application of these wavelets would depend upon the

happenstance of how the vertices were labeled.

Another type of wavelet (see [3]) is defined by the refinement equation

[ _bn(P)

g/ni( P)

g/nj( P)

1 1 1 1

-a n a n -a n -a n

2(a n - an,) 2Ctn, 2(a n - an,) 2(a n - an,)

-a n -a n a n -a n

2(an-anj) 2(an-anj) 2anj 2(a n -anj)

- a n - a n - a n an

rCno(P)/

¢_i(P)[

q_nj(P)[ "

, qknk( P )J

(7)

These wavelets are affine invariant, but this comes at the cost of giving up the

orthogonality. These wavelets are only biorthogonal. Also, as above,

I g/ni = I g/nj = _ g/nk = a.

L T E

We now present our two new types of nearly orthogonal wavelets. The first has the

refmement equation

_(P) )

_'ni(P)[ =

1 1 1 1

1 a2° + Ctnian° 1 a2i + aman° - an°anJ - amanj - an°ank - amank
A A A A

2 2

1 - an° + anjan° - an°ani - anjCtni 1 an'� + an°anJ - Ctn°ank - °tnj°tnk
A A A A

Ct.Zno+ ankCrno - anoOtni - O:nka m - CtnoCtnj - ankO:n}. Ot2k + OtnoCtnk1 1
A A A A

¢_o(p))

¢.i(p)/

¢_k(p);

(8)
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2 2 2 2
where A = ano + Ctni + anj + Ctnk and

2
2( ano + _Zni )( a 2. + ank )

f _'lni = A

r

and the second has the refinement equation

l _,(P) ]

_'m (P)] =

_',,j(p) ]
_.k(P))

1 1 1 1
2 2

1 Ctn°- 3ctniC°*O 3+ 3ani - Ctnian° - Ctn°Otnj+ 3CtniCtnj -- Ctn°Clnk+ 3CtniOtnk
A A A A

2 2

- - 3a_j -- anoOtnj - anoCtnk + 30_njOtnkI ctn° 3anyCtn° Gtn°_ni + 3ctnja'ni - 3 +

A A A A

2 _ 3Ctn k Otno 3Ct2k _ CtnyCtnk
1 _no - _noCtni + 3_nk_ni - CtnoCtnj + 3CtnkCtnj - 3 +

A A A A

r

k_k(p)Y

(9)

2 2 2 2 fwhere A = ano + Ctni + _Tnj + Ctnk and a _ni =

r

20tni(CZnoC_ni+ 3(C_2o + _z2 + CZ2k) )

A

Both of these new wavelets are biorthogonal and affine invariant but not orthogonal. But

these new wavelets have an advantage over other wavelets of this type. As the areas of

the subtriangles become more nearly equal, these wavelets tend to fully orthogonal

wavelets. This is not true of the wavelets given by equation (7) for example. If we let

_n

4 = ani = _nj = Ctnk = °_no the refinement equation for these wavelets becomes

(_n] 1 1

2
- -_ 2

= 2 2

3

_nk )
3 3

12 __12)(_bn°/

2 -
i 2 Jk'¢,kJ

(10)

I I f 4Ctn In the caseand so we have the innerproducts: _/ni_tnj = _ni_nk = _nk_tnJ = 9
T T. T.

of the nearly orthogonal wavelets, we have, for uniform areas, the refinement equations

Ill_ 1 .11 _no 1

\_nk ) 2 21 21 i )t_nk J

(11)

and





] "l1i 15

(_.o1
/_o,./

__L2J (12)

and it can easily be verified that in both cases Cn _L gni, Cn 2. gnj, On 2. _"nk and

_tni I _.tnj , {Ztni 2- _l/nk , Illnj 2- _lnk. So, in both cases, as the areas of the subtriangles

become uniform the wavelets are become mutually orthogonal. It is interesting that these

two wavelets are the only aft'me invariant, fully orthogonal Haar wavelets.

Theorem: In the case where the areas of the subtriangles are all equal, there are only two

types of fully orthogonal, affine invariant Haar wavelets; namely those defined by the

refinement equations given in equations (I 1) and (12).

Proof: If we impose the affine invariance conditions then we must start with refinement

and decomposition relationships of the general form

( (bn l (1 1 1 1)(_bno )

//l_", _o ge gm </_.;/= go gm gg/_,.j/ gml|#,,j[
kgtnk./ go gm gm geJkCnk)

(13)

and

11
?.ol 4 _o _o _o
/_.,/= _ gm grn

l_J/ _ gg gm
_tlni

\ q/nk )

(14)

If we now impose the biorthogonal conditions along with the requirement that (13) be the
inverse of(14), we have that

5_o - _e
ge = 4_o(3_,e+ g'o)

1

go - 4_,o
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-(3 o +
gm = 4 o(3 e +go).

Now if we further impose the conditions of full orthogonality, we have the requirement

(ge - go)(3 'e + 5 o) = 0,

which give rise to two solutions. The first solution (ge = go)leads to the wavelets of

5_
equation (11) and the second solution (ge = -_go) leads to the wavelets of equation

(12) and so these are the only, orthogonal, aft'me invariant Haar wavelets over subdivided
triangular grids.

3. Application Examples

We have applied our new techniques on a variety of data sets, but some of the most

interesting are for the case of a spherical domain. We present some of those results in

this section. First we mention a few things about the triangular grids for a spherical

domain. The construction of the grid starts with a base triangulation of the sphere. Often

this is based upon the vertices of a tetrahedron (4 triangles), octahedron (8 triangles) or

icosahedron (20 triangles). Each triangle of the base triangulation is subdivided into four

triangles by bisecting the geodesic edges at their midpoints. This process is continued.

Figure 3 illustrates this process with the base triangulation being a spherical tetrahedron.

Even though the triangles of Figure 3 are drawn with straight edges, the actual triangles

used for the wavelets are spherical triangles with geodesic arcs as edges. For the sphere,

it is impossible to arrange for the areas of the subtriangles to be equal while in fact the

areas of these subtriangles can be quite different. For example, in the first level of the

case of a tetrahedron as the base triangulation vertices, the area of the center subtriangle is

four times the area of the the other three subtriangles! As we go deeper into the

subdivision, this ratio diminishes to one. It is this aspect of spherical triangles that is

exploited by the nearly orthogonal wavelets we have presented here in equations (8) and

(9). Because of this significant difference in the areas for the tetrahedron at lower levels,
we usually use a base triangulation that utilizes the vertices of an octahedron and this

includes the examples presented here.

We have implemented the wavelets of equation (7) and the new wavelets of (8) and

(9) and applied them to a variety of spherical data sets. For spherical images, the results

of Table 1 are typical. Here we took a spherical image at level 7 ( 32,768 trixels) and

computed the wavelet decomposition and then compared the RMS errors of the

approximations using 10%, 50% and 90% of the terms with the largest normalized

coefficients. Most generally the nearly orthogonal wavelets out performed the wavelets

of (7), but there does not seem to be a clear choice between the two different nearly
orthogonal wavelets.
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(7) (8) (9)

10%

5O%

90%

12.63

3.89

0.329

12.70

3.88

0.324

12.37

3.66

0.303

Table 1. RMS errors for three different types of wavelets

Tetra, Level 1

i
Level 3 Level 6

Figure 3. Spherical Triangular Grid

More interestingly, we have applied our new wavelets to data consisting of a vector

field defined over the sphere. In the example of Figure 4, we took a known vector field

function and evaluated it to obtain the data. We applied the wavelet of equation (8). In

the let_ column we show three views of the reconstruction of the wavelet decomposition

using only 1% of the coefficients. This means we started with a vector valued function

which had 2048 coefficients (one for each triangle). The first time we apply the

decomposition equations we obtain a function which is piecewise constant over 512

triangles and plus the 1536 detail (or wavelet) functions. No information is lost, just a

change of basis. The next step yields a lower resolution approximation consisting of 128
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termsand384 detail at this level plus the 1536detail from the first decompositionstep.
This is continued two more times. This final expansion (of 2048 terms) is scanned and

the 20 (1%) functions with the largest coefficients are summed to obtain the partial

reconstruction. In the right colunm we show the reconstruction based upon the largest

409 (20%) coefficients. It is indistinguishable from the original function. It is interesting

to note that the main features of the flow are maintained with an approximation which

uses only 20 out of 2048 terms and the flow an be compressed to 409 terms (20%) with

no visual loss. The graphs of Figure 4 and Figure 5 are computed using the tangent curve

advection and topological methods described in [2].
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View 1, 1% View I, 20%

\

View 2, 1% View 2, 20%

View 3, 1% View 3, 20%

Figure 4. Partial (nearly orthogonal) spherical wavelet reconstruction of a flow field

defined over a spherical domain.
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In this next exampleshownin Figure 5, we appliedthe waveletsof equation(8) to
some"real" data. This is datawe obtainedfrom Roger Crawfis and Nelson Max of
LawrenceLivermoreNational Laboratory. Actually it is simulateddataresultingfi'om a
globalweathermodel. This data represents one slice in elevation and one time step. The

first column shows three different views using a topological graph of the original data. In

the second column the reconstruction based upon the 3% largest coefficients is shown.

This low resolution approximation allows us to get an overview of the flow without the

clutter and detail. The use of these types of models for analysis and visualization of

scientific data is potentially very useful and a very exciting area of research.
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View 1,100% View 1,3%

View 2, 100% View 2, 3%

View 3, 100% View 3, 3%
Figure5. Sphericalwaveletreconstructionof wind datafrom globalweathermodel
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. Abstract

An algorithm for computing a triangulated surface which separates a

collection of data points that have been segmented into a number of different

classes is presented. The problem generalizes the concept of an isosurface which

separates data points that have been segmented into only two classes: those for

which data function values are above the threshold and those which are below the

threshold value. The algorithm is very simple, easy to implement and applies
without limit to the number of classes.





1. Introduction and Algorithm

In this paper we describe an algorithm for computing a triangulated surface which

separates regions of different types. We assume that we have a collection of data points

V_, i = 1.... ,n and that each of these data points has been classified into one of several

possible classes ci, i = 1,..., M. This includes, for example, medical scanning device data

that has been postprocessed by some segmentation procedure into different tissues or

organ classes or physical simulation data that has been classified by material properties

such solid, liquid or gas. For our algorithm, we assume that the data points V/ are the

vertices of a tetrahedrization of the domain of interest. Two important application areas

are where the data points lie on a 3D rectilinear grid or 3D curvilinear grid. In either case

we preprocess the data by subdividing each voxel or hexahedron (curvilinear grid cell)

into tetrahedra and proceed with our algorithm. See Figure 1 and Nielson [4]. Note that in

the 6 tetrahedra split, each cube is split exactly as shown. In the 5 tetrahedra split, the

mirror image of the split alternates in each direction with the one shown.

or

Figure 1. Decomposing voxel data into tetrahedra data.

Our goal is to produce a triangulated surface which separates the components

(connected subsets) of the regions, Ri,i = 1,..., M, each containing the data of type

c i, i = 1,..., M. This surface can be viewed as a generalization of the isosurface often

associated with the marching cube algorithm (see [3]). In the context of the me algorithm

the discrete vertices lying on a 3D rectilinear grid are classified into only two possible

classes: either the value of the data function, 6, is above the threshold of the isosurface or





below this threshold. The isosurfacethenseparatesthesetwo classesof datapoints into
two regions. In themoregeneralsituationwherethereareseveralpossibleclassesfor data
points, the separatingsurfaceis definedas S = [.J(R, c_ Rj). In the spirit of the mc

i,jzI ,._M,',j,ej

algorithm, our algorithm processes each tetrahedron separately. Let Vi, Vj, Vk, V! be the

vertices of an arbitrary tetrahedron. If two vertices, say Vi and Vjare classified

differently, we make reference to a point m O. along the edge joining Vi and Vj. This

point is where this edge intersects the surface separating the vertices V i and Vj. This

separating point can be anywhere on this edge and in some default situations a reasonable

choice would be the midpoint. We mention some other considerations for selecting this

point later. If three points of a face, V_,Vj and Vk , are classified differently, we must

make reference to a pointm_k lying somewhere interior to this face. Again, for the

topological aspects of our algorithm, it is not important where exactly this point lies on the

face, but some practical considerations which we discuss later lead to reasonable choices

for this point. And finally if all four points are classified differently, we need to reference

a point m t lying interior to the tetrahedron. This notation is further illustrated in Figure 2.

Figure 2. Notation used for vertices, mid-edge, mid-face and mid-tetrahedron points.

The strength of our tetrahedral-based algorithm is its simplicity and subsequent ease of

implementation. There are only five cases to be considered: (0) all vertices are classified

as one type (trivial case; no separating surface intersects the tetrahedron), (1) three

vertices are of one class and one other vertex is of another class, (2) two vertices are of

one class and two vertices are of another class, (3) two vertices of one classand the other
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two verticesareof secondandthird classes,and (4) eachvertex is of a different class.
Becauseany configuration in one of these five casescan be rotated into a standard
configuration, standardizedalgorithmscan be used assumingthat (local) vertices are
labeledVi, Vj, VI_ and Vl .

The face of a tetrahedron having vertices of more than one type must be split. This can

be seen in Figures 3, 4, 5 and 6 for the four nontrivial cases. When the vertices on a

particular face of the tetrahedron are of only two types, the face is split along the line

segment joining the mid-edge points on that face, say the points mil and mjl. This occurs

in cases (1)-(3). When the vertices on a face are all three of a different type, the face must

be split not only at the mid-edge points, but also at the mid-face point mij k interior to this

face. The face is then divided by the line segments joining the mid-face point to the mid-

edge points. When four different types are present then we must involve the mid-

tetrahedron point m t . The separating surface is to be represented as a union of triangles,

so quadrilaterals that naturally occur in our algorithm must be triangulated by including

one diagonal or the other. We adopt the convention that we will impose those diagonals

that are consistent with a certain tetrahedrization of the four hexahedra that occur in case

(4). See Figure 6. Since each hexahedron has a vertex of the cube as one vertex, we adopt

the triangulation of the faces by diagonals from the tetrahedron vertices to the mid-face

points, and the mid-edge points to the mid-tetrahedron point. We should point out that

unless certain restrictions are put on the mid-edge, mid-face and mid-tetrahedron points,

those quadrilaterals may not be planar. This causes no particular problem, although we

note that the separating surface will be slightly different if different choices were made

when triangulating those quadrilaterals.

In case (3), there is a dilemma as to whether the exterior quadrilateral faces

( Vi, Vj, mjl, mil and Vi, Vj, mjk, mik in Figure 5) would be divided from Vi to mjl and Vi

to mjk, or from Vj to mil and Vj to mik when tetrahedrizing the subvolumes. We have

adopted the strategy that the order-of the vertices in the description of the tetrahedrized

volume will determine that; we choose Vi or Vj according to which has priority in the

input list. Because we maintain order when sorting the unique classes of vertices for a

particular tetrahedron, symbolically the first vertex is Vi . Hence we diagonalize the

interior separating quadrilaterals using the line segments through mjk l and mil , and mjk l

and mik.

In case (2), we again wish to be consistent with some tetrahedrization of the volumes,

two triangular prisms in this case. Thus, we follow the rule of connecting the priority

vertex to the opposite mid-edges for each prism, i.e., V/ to mjk and mjl , and Vk to mi!

and mjl. After this is done for each prism, it is seen that the diagonal on the separating

quadrilateral is arbitrary, and we choose the mjk to mil segment.
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For completeness we list the triangles comprising the separating surface in each case.

Case (1):

Triangle: rail , mjl , mkl

vl

rail

Figure 3.

Case (2):

Triangles: mik , mjk , rail; mil , mjk , mjl

mkl

Figure 4.

mjl

Case (1): Three vertices of one class and one vertex of another class.

rail

nik

vi

mjl

Case (2): Two vertices of one class and two vertices of another class.





Case (3):

Triangles:
mkl , mikl , mjkl ; mjk , mik , mjkl ; mik , mjkl , mild;

mjl, mil, mjkl; mil, mikl, mjkl

Zl

rail Vj

Figure 5. Case (3): Two vertices of one class and two other vertices each of another class.

Case (4):

mi./, mijk, mt; mb', mijl, mt; mjk, mijk, mt; mjk, mjkl, mt;

Triangles: mik , mijk, m t; mik , mikl, m t; mfl, mjkl, m t; mfl, mifl , m t;

rail, mijl, mt; rail, mikl, mt; mkl, mikl, mt; mkl, mjkl, mt

vt

\/.

_mik miJk

Vi

Figure 6. Case (4): Each vertex is a different class.





For the general description of our algorithm, we have kept the location of the mid-

edge, mid-face and mid-tetrahedron points arbitrary. It is easy to present this way and also

this allows for maximum flexibility. In some applications where there is no additional

information on which to base any bias or adjustment, one just as well select these point to

be the actual geometric midpoints. That is,

rnU -

mij k =

m t =

5
2

m O. + mik + mjk

3

mijk + mjkl + mikl + mijl

4

(1)

In some other applications where there is additional information some weights may be

used to compute these values. For example, if data points are classified (or segmented) on

an interval of values of some data function, then it might be useful to weight accordingly

the computation of the mid-edge value. Assume that an arbitrary point V = (x,y, z) is

classified by the rules:

V is of class c a provided ct < 8(V) < m

and

V is of class cflprovided m < 5(V) < ft.

Further assume that Va and Vb are vertices that are classified as ca and c fl, respectively.

If we now consider the values of 6 varying linearly along the edge joining Va and Vb we

could choose the mid-edge point to be the point where 6 becomes equal to m which is the

point where the classification changes from c a to eft . That would be

(m-6(V.))V_ +( 8(Vb)-m _V o .
mob = 8(Vb) _ 6(Vo)) b k,6(V b) - 6(Vo))

We have also used the following approach which is based upon the idea of a preference or

probability matrix. The user specifies the off-diagonal values of an M x M matrix

P = (P0)" These values serve as the weights for computing the mid-edge points. Let

vertex Va be of class ca and Vb be of class cfl be vertices of the same tetrahedron. Then

the edge joining Va and Vb will intersect the separating surface at p_V b + pp_Vo. Since

the separating point must be a convex combination of the vertices we require that

0 < PO -< 1 and PO + Pji = 1, i ¢ j. The interpretation of the matrix P can be in terms of
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the "strength"of variousclassesrelativeto otherclasses,or it can beusedto causethe
separatingsurfaceto comecloseto (or stayfurtherawayfrom) certainclassesof points.
For example, it may be desirableto not overestimatethe volume associatedwith a
particularclass,andin that casethevaluesin therowof thematrix P associated with that

class should be close to zero, forcing the separating surface close to the vertices of that
class.

2. Examples

The first example has three regions. Points above the plane z = 0, and outside the

sphere x 2 +y2 +z 2 = 0.25, are of one type. Points below the plane and outside the

sphere are in a second class and the points inside the sphere form the third class. Over the

domain {(x,y,z): - 0.025 < x < 0.625, - 0.625 < y < 0.625, - 0.625 ___z < 0.625} we

formed a grid of size 14 x 26 x 26 and classified the points on this grid according to the

ideal. We then applied our algorithm, using the 5 tetrahedra per cube split. In this case

we used the formulas of equation (1) for determining the mid-edge, mid-face and mid-

tetrahedron points. The results are shown in Figure 7.

-0.1

-0.2 i.i.......

-0.6

Figure 7. An example with three regions.





Oneof the featuresof our algorithmis that it is designedfor scattereddata. Our next
exampleillustratesits usein that context. Becausethealgorithmwe usedtetrahedrized
the convexhull, points nearthe boundarymay be in tetrahedrawith largeaspectratios.
This causesdistortionaroundtheboundaries,so in Figure8theseparatingtrianglesnear
theboundaryhavebeendeleted. We note,however,that if thepropertetrahedrizationis
performed,the separatingtrianglescouldbeprocessedusingsubsetsof theentiredataset
becauseour algorithm guaranteesa proper matchacrosstetrahedronboundaries. For
Figure 8, we generated 2000 random points in the region
{(x,y,z): - 0.2_<x < 1, - 1 < y < 1, - I _<z < 1}. These points were then classified

according to the same scheme as for the previous example. The point set was

tetrahedrized and our algorithm applied with separating points being taken according to

equation (1). To avoid the distraction of poor edge behavior, we then eliminated each

triangle in the separating surface whose median point fell outside the region

{(x,y,z): 0 <_x < 0.75, - 0.75 _<y < 0.75, - 0.75 _ z_< 0.75}. The results are given in

Figure 8. The separating surface is necessarily jagged, but the proper character is shown.

0,5_

0_

i
i .'": . ' -o.6

• • :: -oA

i .".- • -0.2

0

Figure 8. An example with three regions, random points.
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The final example has five different regions. These regions are defined relative to

several conic surfaces, and the volumes are described sequentially, with a given class

overriding a lower numbered one. Above the paraboloid z = 0.5(x _ +y2) the class is 1,

while below (or on) the paraboloid the class is 3; inside the sphere

x 2 +y_ +(z-0.75) 2 =0.4, the class is 2; inside the sphere x 2 +y2 +(z+l)2 =0.8, the

class is 4; and finally, inside the ellipsoid 2x 2 +(y-0.5) 2 +(z-0.1) 2 = 0.6, the class is

5. We formed a 41 x 41 x 41 grid over the domain

{(x,y,z): - 1 < x < 1, - 1 < y <_ 1, - 1 <_z < 1} and classified the points according to the

definitions of the various regions. Using the 6 tetrahedra per cube split, we ran our

algorithm on this data using the P matrix P_j = 1 - 0.2(j - i) for i<j. Because of the

dense set of separating triangles, the results are shown as a shaded object in Figure 9.

0.5 0

-1

Figure 9. A surface separating five regions.
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3. Summary and Remarks

An algorithm which produces a solution to a problem similar to that discussed here is

described in [1]. This algorithm is based on case tables for the various configurations of

classified vertices of a cube (or voxel) rather than a tetrahedron as used here. The number

of equivalence classes of configurations (under rotations and possibly also mirroring

transformations) for two and three classes of vertices on a cube is manageable but for more

than three classes the authors mention that a table look-up approach is probably not viable

due to the large number of different configurations.

It is possible to use the techniques of this paper to build the case tables for cube

scenario, but the results are different (possibly simpler) than what is presented in [1] due to

the difference of using trilinear interpolation compared to piecewise linear interpolation

over tetrahedron. For example, in the case where S = {(x, y, z): Ro (x, y, z) = Ro(x, y, z)} is

the separating surface with

Ro(x, y, z) = xyz + (1 - x)(1 - y)z + (1 - x)y(1 - z) + x(1 - y)(1 - z) and

Ro(x, y, z) = (1 - x)(1 - y)(1 - z) + xy(1 - z) + x(1 - y)z + (1 - x)yz in the case of trilinear

interpolation and Ro and Ro appropriately defined for the piecewise linear case, the

piecewise linear case (using the 6 tetrahedra split) leads to a separating surface which is a

manifold topologically equivalent to a plane, but the trilinear interpolation method leads to

a surface that is topologically equivalent to the intersection of three planes!

The algorithm presented here assumes that the data has been segmented into various

classes and cannot be applied until this is accomplished. The problem of segmenting data

is a highly nontrivial and currently unsolved problem. In no way does this present simple

algorithm add to the solution of this problem, but possibly a more general algorithm which

produces a tetrahedrized volume representation of the regions for different classes could

be a useful tool in this regard. In a future paper, we will present such an algorithm.
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